找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Symmetry; Dedicated to Károly Marston D. E. Conder,Antoine Deza,Asia Ivi? Weiss Conference proceedings 2018 Springer

[復(fù)制鏈接]
樓主: informed
31#
發(fā)表于 2025-3-27 00:12:34 | 只看該作者
32#
發(fā)表于 2025-3-27 04:52:00 | 只看該作者
Monge Points, Euler Lines, and Feuerbach Spheres in Minkowski Spaces,y developed discipline. There are many natural notions and problems of elementary and classical geometry that were never investigated in this more general framework, although their Euclidean subcases are well known and this extended viewpoint is promising. An example is the geometry of simplices in
33#
發(fā)表于 2025-3-27 06:11:58 | 只看該作者
34#
發(fā)表于 2025-3-27 13:04:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:33:37 | 只看該作者
36#
發(fā)表于 2025-3-27 19:49:14 | 只看該作者
Discrete Geometry and Symmetry978-3-319-78434-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
37#
發(fā)表于 2025-3-27 22:58:00 | 只看該作者
38#
發(fā)表于 2025-3-28 02:58:36 | 只看該作者
https://doi.org/10.1007/978-1-4419-6035-1examples can be found in literature. We study finite rank 4 structures obtained by hexagonal extensions of toroidal hypermaps. Many new examples are produced that are regular or chiral, even when the extensions are polytopal. We also construct a new infinite family of finite nonlinear hexagonal extensions of the tetrahedron.
39#
發(fā)表于 2025-3-28 07:19:56 | 只看該作者
Super Sinne - Warum wir 32 davon haben obtained: there is a tiling of the plane by pairwise non-congruent triangles of equal area such that their perimeter is bounded by some common constant. Several variants of the problem are stated, some of them are answered.
40#
發(fā)表于 2025-3-28 12:41:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 墨竹工卡县| 惠州市| 保康县| 鹤庆县| 衡阳市| 黎平县| 万州区| 东方市| 筠连县| 阳春市| 阳新县| 安吉县| 黄骅市| 虎林市| 崇礼县| 芦山县| 黄山市| 兴安盟| 韩城市| 巴塘县| 山东省| 凤山市| 泌阳县| 晋宁县| 舒城县| 南木林县| 望都县| 固始县| 清河县| 民县| 塔城市| 微博| 夏津县| 唐河县| 礼泉县| 新津县| 江口县| 黔西县| 沂水县| 高密市|