找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復(fù)制鏈接]
樓主: probiotic
61#
發(fā)表于 2025-4-1 04:02:58 | 只看該作者
,Mahler’s Classification of Numbers Compared with Koksma’s, II,lgebraic numbers. Following Mahler [.], for any integer . ≥ 1, we denote by w.(ξ) the supremum of the exponents . for which . has infinitely many solutions in integer polynomials P(.) of degree at most . Here, H(.) stands for the na?ve height of the polynomial P(.), that is, the maximum of the absol
62#
發(fā)表于 2025-4-1 07:19:59 | 只看該作者
63#
發(fā)表于 2025-4-1 11:16:50 | 只看該作者
Applications of the Subspace Theorem to Certain Diophantine Problems, 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
64#
發(fā)表于 2025-4-1 16:22:46 | 只看該作者
65#
發(fā)表于 2025-4-1 22:02:08 | 只看該作者
66#
發(fā)表于 2025-4-1 23:44:51 | 只看該作者
67#
發(fā)表于 2025-4-2 06:13:53 | 只看該作者
Counting Algebraic Numbers with Large Height I,r . and real number ., it is well known that the number . of points α in . having degree . over ? and satisfying . is finite. This is the one-dimensional case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher
68#
發(fā)表于 2025-4-2 08:30:32 | 只看該作者
69#
發(fā)表于 2025-4-2 11:34:03 | 只看該作者
On the Continued Fraction Expansion of a Class of Numbers,al reference is Chapter I of [10]). If ξ is irrational, then, by letting . tend to infinity, this provides infinitely many rational numbers ../x. with |ξ - x./x...... By contrast, an irrational real number ξ is said to be . if there exists a constant c. > 0 suchthat |ξ - ..... for each .. or,equival
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 19:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合水县| 深泽县| 布尔津县| 莱芜市| 乡宁县| 中方县| 汶上县| 石泉县| 景泰县| 子长县| 大竹县| 长乐市| 营山县| 西城区| 元朗区| 安溪县| 德安县| 昌平区| 文登市| 麟游县| 新民市| 宁安市| 吴江市| 砀山县| 永吉县| 水城县| 会东县| 江西省| 井冈山市| 中超| 安平县| 定远县| 合作市| 桐城市| 左云县| 高唐县| 平山县| 千阳县| 桓台县| 阿克苏市| 甘泉县|