找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復制鏈接]
查看: 44272|回復: 68
樓主
發(fā)表于 2025-3-21 16:44:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Diophantine Approximation
副標題Festschrift for Wolf
編輯Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic
視頻videohttp://file.papertrans.cn/281/280530/280530.mp4
概述Current information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
叢書名稱Developments in Mathematics
圖書封面Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver
描述This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter Schlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions deal with the subspace theorem and its applications to diophantine equations and to the study of linear recurring sequences. The articles are either in the spirit of more classical diophantine analysis or of geometric or combinatorial flavor. In particular, estimates for the number of solutions of diophantine equations as well as results concerning congruences and polynomials are established. Furthermore, the volume contains transcendence results for special functions and contributions to metric diophantine approximation and to discrepancy theory. The articles are based on lectures given at a conference at the Erwin Schr6dinger Institute in Vienna in 2003, in which many leading experts in the field of diophantine approximation participated. The editors are very grateful to the Erwin Schr6dinger Institute and to the FWF (Austrian Science Fund) for the financial support and they express their particular thanks to Springer-Verlag for the excellent coo
出版日期Conference proceedings 2008
關鍵詞Algebra; Diophantine; Diophantine approximation; Festschrift; Number Theory; Tichy; Wolfgang Schmidt; conti
版次1
doihttps://doi.org/10.1007/978-3-211-74280-8
isbn_softcover978-3-211-99909-7
isbn_ebook978-3-211-74280-8Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer-Verlag Vienna 2008
The information of publication is updating

書目名稱Diophantine Approximation影響因子(影響力)




書目名稱Diophantine Approximation影響因子(影響力)學科排名




書目名稱Diophantine Approximation網絡公開度




書目名稱Diophantine Approximation網絡公開度學科排名




書目名稱Diophantine Approximation被引頻次




書目名稱Diophantine Approximation被引頻次學科排名




書目名稱Diophantine Approximation年度引用




書目名稱Diophantine Approximation年度引用學科排名




書目名稱Diophantine Approximation讀者反饋




書目名稱Diophantine Approximation讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:56:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:32 | 只看該作者
Hans Peter Schlickewei,Klaus Schmidt,Robert F. TicCurrent information on important branches of diophantine approximation from leading experts in the field.Diverse methods are presented.The influence of diophantine approximation in other fields, e.g.
地板
發(fā)表于 2025-3-22 07:40:51 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/e/image/280530.jpg
5#
發(fā)表于 2025-3-22 10:04:31 | 只看該作者
Introduction: Urban Developmentied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ?.: . > C., 1 ≤ . ≤ .
6#
發(fā)表于 2025-3-22 13:03:46 | 只看該作者
Introduction: Urban Developmentsearch paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
7#
發(fā)表于 2025-3-22 17:11:19 | 只看該作者
8#
發(fā)表于 2025-3-23 00:31:50 | 只看該作者
Adil Mohammed Khan,Ishrat Islam L.-discrepancy . where for every . = (y.,..., . .) ∈ . ., the local discrepancy . is given by . Here . is a rectangular box of volume vol . y1... . ., and #(.) denotes the number of points of a set ., counted with multiplicity.
9#
發(fā)表于 2025-3-23 05:08:07 | 只看該作者
Introduction: Regional Resources 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
10#
發(fā)表于 2025-3-23 07:12:47 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-29 18:59
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天等县| SHOW| 江陵县| 马关县| 云安县| 吐鲁番市| 廊坊市| 庆元县| 濮阳县| 新平| 驻马店市| 元氏县| 双柏县| 建昌县| 湘阴县| 凤翔县| 阿巴嘎旗| 上饶县| 社旗县| 横山县| 高清| 玉田县| 山东| 新竹县| 阳泉市| 九台市| 顺义区| 兴业县| 陆川县| 沾化县| 微山县| 武城县| 滕州市| 明光市| 霍林郭勒市| 富平县| 独山县| 衡南县| 山阴县| 荆州市| 邻水|