找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復(fù)制鏈接]
樓主: probiotic
61#
發(fā)表于 2025-4-1 04:02:58 | 只看該作者
,Mahler’s Classification of Numbers Compared with Koksma’s, II,lgebraic numbers. Following Mahler [.], for any integer . ≥ 1, we denote by w.(ξ) the supremum of the exponents . for which . has infinitely many solutions in integer polynomials P(.) of degree at most . Here, H(.) stands for the na?ve height of the polynomial P(.), that is, the maximum of the absol
62#
發(fā)表于 2025-4-1 07:19:59 | 只看該作者
63#
發(fā)表于 2025-4-1 11:16:50 | 只看該作者
Applications of the Subspace Theorem to Certain Diophantine Problems, 1970, as an evolution of slightly special cases related to an analogue of Roth’s Theorem for simultaneous rational approximations to several algebraic numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximatio
64#
發(fā)表于 2025-4-1 16:22:46 | 只看該作者
65#
發(fā)表于 2025-4-1 22:02:08 | 只看該作者
66#
發(fā)表于 2025-4-1 23:44:51 | 只看該作者
67#
發(fā)表于 2025-4-2 06:13:53 | 只看該作者
Counting Algebraic Numbers with Large Height I,r . and real number ., it is well known that the number . of points α in . having degree . over ? and satisfying . is finite. This is the one-dimensional case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher
68#
發(fā)表于 2025-4-2 08:30:32 | 只看該作者
69#
發(fā)表于 2025-4-2 11:34:03 | 只看該作者
On the Continued Fraction Expansion of a Class of Numbers,al reference is Chapter I of [10]). If ξ is irrational, then, by letting . tend to infinity, this provides infinitely many rational numbers ../x. with |ξ - x./x...... By contrast, an irrational real number ξ is said to be . if there exists a constant c. > 0 suchthat |ξ - ..... for each .. or,equival
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 00:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵武市| 津南区| 中牟县| 景洪市| 盐亭县| 青神县| 昌江| 本溪市| 墨玉县| 丰宁| 高安市| 措美县| 阿拉善右旗| 荆门市| 石楼县| 宿州市| 密山市| 肃南| 稷山县| 富平县| 瑞昌市| 裕民县| 吴忠市| 莱州市| 航空| 博乐市| 岑巩县| 东至县| 建德市| 交口县| 塔河县| 博野县| 明溪县| 泊头市| 皮山县| 璧山县| 胶南市| 徐水县| 浦江县| 茂名市| 贵溪市|