找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Approximation; Festschrift for Wolf Hans Peter Schlickewei,Klaus Schmidt,Robert F. Tic Conference proceedings 2008 Springer-Ver

[復制鏈接]
樓主: probiotic
51#
發(fā)表于 2025-3-30 08:45:12 | 只看該作者
A Typology of Spatial Econometric Modelsmbers can also be described as those ξ ∈ ? ? for which the result of Dirichlet can be improved in the sense that there exists a constant c. < 1 such that the inequalities 1 ≤ x. ≤ . |x.ξ ... c.X. admit a solution (x., x.) ∈ ?. for each sufficiently large . (see Theorem 1 of [2]).
52#
發(fā)表于 2025-3-30 16:09:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:40:10 | 只看該作者
54#
發(fā)表于 2025-3-31 00:26:29 | 只看該作者
55#
發(fā)表于 2025-3-31 04:08:13 | 只看該作者
Applications of the Subspace Theorem to Certain Diophantine Problems,c numbers. While Roth’s Theorem considers rational approximations to a given algebraic point on the line, the Subspace Theorem deals with approximations to given hyperplanes in higher dimensional space, defined over the field of algebraic numbers, by means of rational points in that space.
56#
發(fā)表于 2025-3-31 06:26:39 | 只看該作者
57#
發(fā)表于 2025-3-31 11:35:42 | 只看該作者
Counting Algebraic Numbers with Large Height I,nal case of Northcott’s Theorem [.] (see also [5, page 59]). The systematic study of the counting function ., and that of related functions in higher dimensions, was begun by Schmidt [.]. It is relatively easy to prove the existence of a positive constant . such that . and also the existence of positive constants . and . such that
58#
發(fā)表于 2025-3-31 13:45:19 | 只看該作者
59#
發(fā)表于 2025-3-31 21:07:29 | 只看該作者
,Sch?ffer’s Determinant Argument,ied since 1957, beginning with Danicic [.]. Given an integer . ≥ 2. we seek a number . having the following property, for every ∈ > 0 and every pair α = (α., ... α.), β = (β.,..., β.) in ?.: . > C., 1 ≤ . ≤ .
60#
發(fā)表于 2025-3-31 21:55:13 | 只看該作者
Arithmetic Progressions and Tic-Tac-Toe Games,search paper containing proofs for new results (Sections 5–8). I use many different sources; to make the reader’s life easier, I decided to keep the paper (more-or-less) self-contained - this explains the considerable length.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-30 00:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南乐县| 康定县| 遂川县| 尤溪县| 黎城县| 临安市| 凭祥市| 天津市| 宁安市| 五原县| 安达市| 鹤岗市| 宁海县| 阳东县| 娱乐| 盘锦市| 民乐县| 明溪县| 江永县| 和硕县| 兴仁县| 建阳市| 手机| 津南区| 洱源县| 乐陵市| 富川| 庄河市| 乐山市| 木里| 正安县| 甘谷县| 错那县| 义马市| 行唐县| 惠东县| 西盟| 内黄县| 民乐县| 漾濞| 霍林郭勒市|