找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension and Recurrence in Hyperbolic Dynamics; Luis Barreira Book 2008 Birkh?user Basel 2008 calculus.dimension theory.hyperbolic set.ma

[復(fù)制鏈接]
樓主: Obsolescent
31#
發(fā)表于 2025-3-26 21:01:49 | 只看該作者
Fabian Kessl,Christian Reutlinger growing interest during the last decade, also in connection with other fields, including for example compression algorithms. We describe in this chapter several results that provide partial answers to the problem.
32#
發(fā)表于 2025-3-27 03:05:33 | 只看該作者
Multidimensional Spectra and Number Theoryluding their “size” in terms of topological entropy and of Hausdorff dimension. It turns out that the corresponding multidimensional multifractal spectra exhibit several nontrivial phenomena that are absent in the one-dimensional case. A unifying element continues to be the use of the thermodynamic formalism.
33#
發(fā)表于 2025-3-27 05:38:22 | 只看該作者
Hyperbolic Sets: Past and Futurex dimension to be strictly larger than their Hausdorff dimension, and thus a product of level sets may have a Hausdorff dimension that a priori need not be the sum of the dimensions of the level sets. Instead, we construct explicitly . measures concentrated on each product of level sets having the appropriate pointwise dimension.
34#
發(fā)表于 2025-3-27 12:19:52 | 只看該作者
Quantitative Recurrence and Dimension Theory growing interest during the last decade, also in connection with other fields, including for example compression algorithms. We describe in this chapter several results that provide partial answers to the problem.
35#
發(fā)表于 2025-3-27 14:00:50 | 只看該作者
Repellers and Hyperbolic Setserbolic dynamics. We show in this chapter that indeed a similar approach can be effected for repellers and hyperbolic sets of conformal maps, using Markov partitions and essentially following the arguments for geometric constructions in Chapter 3.
36#
發(fā)表于 2025-3-27 21:44:55 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:05 | 只看該作者
38#
發(fā)表于 2025-3-28 05:06:24 | 只看該作者
Intelligenzminderung (Geistige Behinderung)ny spectra that can be seen as potential multifractal moduli, in the sense that they may contain nontrivial information about the dynamical system. In particular, we describe in detail the multifractal analysis of the so-called .-dimension, which allows us to unify and generalize the results in Chapter 6.
39#
發(fā)表于 2025-3-28 07:44:48 | 只看該作者
40#
發(fā)表于 2025-3-28 11:24:06 | 只看該作者
Ute Ziegenhain PD Dr.,Rüdiger von Kriesmeasure. Nevertheless, it may be very large from the topological and dimensional points of view. This is the main theme of this chapter, where we also describe a general approach to the study of the .-dimension of irregular sets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宕昌县| 沭阳县| 浠水县| 涞源县| 吐鲁番市| 麻阳| 玛曲县| 灵川县| 石台县| 开原市| 济宁市| 达拉特旗| 天祝| 修水县| 香河县| 汕头市| 鄂托克旗| 德保县| 宾阳县| 天祝| 玉山县| 财经| 铁岭县| 新安县| 尼勒克县| 东兰县| 平利县| 炎陵县| 比如县| 泊头市| 赣榆县| 潼南县| 布尔津县| 丰镇市| 湛江市| 凯里市| 庆城县| 乌鲁木齐县| 德令哈市| 枣阳市| 潢川县|