找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension and Recurrence in Hyperbolic Dynamics; Luis Barreira Book 2008 Birkh?user Basel 2008 calculus.dimension theory.hyperbolic set.ma

[復(fù)制鏈接]
樓主: Obsolescent
11#
發(fā)表于 2025-3-23 11:55:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:38 | 只看該作者
Sozialp?dagogik – P?dagogik des Sozialenerved in Section 3.1, one of the motivations for the study of geometric constructions is precisely the study of the dimension of invariant sets of hyperbolic dynamics. We show in this chapter that indeed a similar approach can be effected for repellers and hyperbolic sets of conformal maps, using Ma
13#
發(fā)表于 2025-3-23 18:56:49 | 只看該作者
Sozialp?dagogik – P?dagogik des Sozialenional version of the existence of ergodic measures of maximal entropy. A crucial difference is that while the entropy map is upper semicontinuous, the map ν→dim. ν is neither upper semicontinuous nor lower semicontinuous. Our approach is based on the thermodynamic formalism. It turns out that for a
14#
發(fā)表于 2025-3-24 00:54:34 | 只看該作者
Vernachl?ssigung, Misshandlung, Missbrauchubarea of the dimension theory of dynamical systems. Briefly speaking, it studies the complexity of the level sets of invariant local quantities obtained from a dynamical system. For example, we can consider Birkhoff averages, Lyapunov exponents, pointwise dimensions, and local entropies. These func
15#
發(fā)表于 2025-3-24 03:26:26 | 只看該作者
Intelligenzminderung (Geistige Behinderung)namical systems and other invariant local quantities, besides the pointwise dimension considered in (6.1). With the purpose of unifying the theory, in 9 Barreira, Pesin and Schmeling proposed a general concept of multifractal analysis that we describe in this chapter. In particular, this provides ma
16#
發(fā)表于 2025-3-24 10:11:16 | 只看該作者
Ute Ziegenhain PD Dr.,Rüdiger von Kriess. These spectra are obtained from multifractal decompositions such as the one in (7.1). In particular, we possess very detailed information from the ergodic, topological, and dimensional points of view about the level sets . in each multifractal decomposition. On the other hand, we gave no nontrivi
17#
發(fā)表于 2025-3-24 12:56:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:13:19 | 只看該作者
Andreas Borchert,Susanne Maurerlocal entropy, and pointwise dimension. However, the theory of multifractal analysis described in the former chapters only considers separately each of these local quantities. This led Barreira, Saussol and Schmeling to develop in 20 a multidimensional version of the theory of multifractal analysis.
19#
發(fā)表于 2025-3-24 22:41:07 | 只看該作者
20#
發(fā)表于 2025-3-25 03:06:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂荣县| 苍南县| 静乐县| 黄陵县| 北安市| 安义县| 平利县| 来凤县| 吉安市| 湖口县| 封丘县| 芒康县| 安多县| 日照市| 庐江县| 乌拉特后旗| 蚌埠市| 永平县| 金沙县| 三亚市| 长岛县| 富裕县| 陕西省| 瑞金市| 米林县| 南陵县| 夏邑县| 延寿县| 灵山县| 徐水县| 巴马| 介休市| 田阳县| 临沧市| 城固县| 闵行区| 莱州市| 华蓥市| 中超| 苏尼特右旗| 慈利县|