找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension Theory; A Selection of Theor Michael G. Charalambous Book 2019 Springer Nature Switzerland AG 2019 covering dimension.inductive d

[復制鏈接]
樓主: 冰凍
51#
發(fā)表于 2025-3-30 08:53:50 | 只看該作者
52#
發(fā)表于 2025-3-30 15:22:03 | 只看該作者
Wolfgang Stroebe,Klaus Jonas,Miles Hewstone equal to 1 and inductive dimensions equal to 2. . is the union of two closed subspaces .., .?=?1, 2, with .. This shows that the finite sum theorem for . and . on compact Hausdorff spaces fails. The second example is of a strongly zero-dimensional normal Hausdorff space .., for . or .?=?., containi
53#
發(fā)表于 2025-3-30 19:42:25 | 只看該作者
Sozialpsychologie der Partnerschaftly of compact Hausdorff spaces was constructed by Vopěnka. His construction is described in Pears’s book. We present a simpler construction due to Krzempek, which combines ideas from Vopěnka’s paper and from a more recent construction by Chatyrko. Before describing the construction, we establish fou
54#
發(fā)表于 2025-3-30 21:12:50 | 只看該作者
55#
發(fā)表于 2025-3-31 03:38:58 | 只看該作者
Theorien und Modelle der Paarbeziehung. is . if . has an open cover every member of which intersects at most one member of .. . is .-. (respectively, .-.) if it is the union of countably many locally finite (respectively, discrete) collections.. is called . if every open cover of . has a locally finite open refinement. The proof that we
56#
發(fā)表于 2025-3-31 07:16:33 | 只看該作者
Bindung und Partnerschaftsrepr?sentationnto compact Hausdorff spaces. As immediate corollaries we have a compactification theorem and a universal space theorem for Tychonoff spaces of given covering dimension and weight. We also use the theorem to prove the equality . and other important results of the dimension theory of metric spaces.
57#
發(fā)表于 2025-3-31 12:41:29 | 只看該作者
Zum Gegenstand der Sozialpsychologietled some 10 years later by P. Roy, who constructed a metric space Δ with . and .. Roy’s example, announced in Roy (Bull Am Math Soc 68:609–613, 1962) and published in full detail in Roy (Trans Am Math Soc 134:117–132, 1968), is generally considered to be of forbidding complexity. In this chapter we
58#
發(fā)表于 2025-3-31 17:04:30 | 只看該作者
59#
發(fā)表于 2025-3-31 20:15:34 | 只看該作者
60#
發(fā)表于 2025-3-31 23:31:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
富锦市| 西藏| 安化县| 临沂市| 兴隆县| 台中县| 金寨县| 余江县| 岗巴县| 丹东市| 铅山县| 英超| 广水市| 拜城县| 德兴市| 昌都县| 平遥县| 蚌埠市| 肇庆市| 江达县| 将乐县| 手游| 颍上县| 中江县| 柳江县| 闽清县| 武汉市| 修水县| 曲松县| 北安市| 张北县| 纳雍县| 宜州市| 邳州市| 临城县| 宁武县| 双鸭山市| 稷山县| 郁南县| 桦甸市| 皋兰县|