找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension Theory; A Selection of Theor Michael G. Charalambous Book 2019 Springer Nature Switzerland AG 2019 covering dimension.inductive d

[復(fù)制鏈接]
樓主: 冰凍
11#
發(fā)表于 2025-3-23 10:41:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:17:17 | 只看該作者
13#
發(fā)表于 2025-3-23 21:21:14 | 只看該作者
Wolfgang Stroebe,Klaus Jonas,Miles Hewstoneiven ., we present a Tychonoff space . which is the union of two zero subspaces .., .. such that dim...?= dim...?=?0 while dim..?=?.. We also construct Tychonoff spaces .? with dim..?=?0 that contain zero subspaces . with dim.. as large as we wish, showing the failure of the subset theorem for dim. in a strong form.
14#
發(fā)表于 2025-3-24 00:42:24 | 只看該作者
Theorien und Modelle der Paarbeziehungany locally finite (respectively, discrete) collections.. is called . if every open cover of . has a locally finite open refinement. The proof that we give of the following fundamental result of Stone is due to Mary Ellen Rudin.
15#
發(fā)表于 2025-3-24 05:06:09 | 只看該作者
Zum Gegenstand der Sozialpsychologie and published in full detail in Roy (Trans Am Math Soc 134:117–132, 1968), is generally considered to be of forbidding complexity. In this chapter we present Kulesza’s much simpler metrizable space . with . and ., published in his paper Kulesza (Topol Appl 35:109–120, 1990) of 1990.
16#
發(fā)表于 2025-3-24 09:04:33 | 只看該作者
Book 2019e emphasis on the negative results for more general spaces, presenting a readable account of numerous counterexamples to well-known conjectures that have not been discussed in existing books. Moreover, it includes three new general methods for constructing spaces: Mrowka‘s psi-spaces, van Douwen‘s t
17#
發(fā)表于 2025-3-24 13:52:55 | 只看該作者
The Dimension of Euclidean Spaces, to Morita and Smirnov, who generalized the result of Alexandroff for the case of compact Hausdorff spaces. From this inequality, the countable sum theorem for . and the Urysohn inequality for ., it will follow that . and ..
18#
發(fā)表于 2025-3-24 16:16:47 | 只看該作者
Connected Components and Dimension,∈?., is the union of all connected subspaces of . that contain .. The intersection of all clopen sets of . that contain ., denoted here by ., is called the . of .. If . for every .?∈?., . is called .. If . for every .?∈?., . is called .. Note that both . and . are closed subsets of . and . is connected.
19#
發(fā)表于 2025-3-24 22:32:17 | 只看該作者
Universal Spaces for Separable Metric Spaces of Dimension at Most ,,. space ., which consists of all points of . that have at most . rational coordinates, is a universal space for the class of all separable metric spaces of covering dimension at most .. We first need some preliminary results.
20#
發(fā)表于 2025-3-25 02:09:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 进贤县| 正宁县| 弋阳县| 郓城县| 句容市| 广丰县| 昌江| 黎城县| 大渡口区| 龙里县| 寿光市| 山西省| 盘山县| 河东区| 彭泽县| 澳门| 炉霍县| 确山县| 五台县| 巩义市| 惠来县| 宝清县| 万宁市| 金山区| 龙山县| 沙湾县| 遂昌县| 登封市| 株洲市| 板桥市| 萍乡市| 栖霞市| 天台县| 嵊州市| 抚顺县| 苍梧县| 云霄县| 宜君县| 桃江县| 蓬莱市|