找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry, Group Representations, and Quantization; J?-Dieter Hennig,Wolfgang Lücke,Ji?í Tolar Conference proceedings 1991 Spr

[復制鏈接]
樓主: Filament
31#
發(fā)表于 2025-3-26 21:56:50 | 只看該作者
https://doi.org/10.1007/978-1-349-07365-8lier results on null states of so(3, 2)representations. For the other we first obtain the characters of the unitary representations of so(3, 2)and then we show their equivalence with the spectrum results
32#
發(fā)表于 2025-3-27 02:03:36 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:33 | 只看該作者
34#
發(fā)表于 2025-3-27 09:29:40 | 只看該作者
35#
發(fā)表于 2025-3-27 16:19:13 | 只看該作者
Joachim Sch?ffel,Raimund Kemper GL(2,?) and the linear Lorentz-conformal group CO(1,3) = ?. SO(1, 3) ; the tetrad part is then separately invariant under GL(4, ?). In usual models, gravitational Lagrangians are built in a. SO(1,3)-invariant way, and Lagrangians for spinor-tetrad systems are invariant under the homomorphically cor
36#
發(fā)表于 2025-3-27 18:56:18 | 只看該作者
37#
發(fā)表于 2025-3-27 22:32:24 | 只看該作者
38#
發(fā)表于 2025-3-28 05:38:48 | 只看該作者
,GL(,, ?), tetrads and generalized space-time dynamics, GL(2,?) and the linear Lorentz-conformal group CO(1,3) = ?. SO(1, 3) ; the tetrad part is then separately invariant under GL(4, ?). In usual models, gravitational Lagrangians are built in a. SO(1,3)-invariant way, and Lagrangians for spinor-tetrad systems are invariant under the homomorphically cor
39#
發(fā)表于 2025-3-28 10:08:47 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:55 | 只看該作者
0075-8450 les on a wide variety of applications of these techniques in classical continuum physics, gauge theories, quantization procedures, and the foundations of quantum theory. The articles, written by leading scientists, address both researchers and grad- uate students in mathematics, physics, and philoso
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
土默特右旗| 台南市| 团风县| 饶河县| 稻城县| 亳州市| 塔城市| 惠东县| 定安县| 长岭县| 吉隆县| 嵊州市| 玉环县| 夹江县| 灌南县| 鄂托克前旗| 浑源县| 大余县| 安达市| 石河子市| 台南市| 新化县| 额济纳旗| 西乡县| 婺源县| 临猗县| 彭山县| 天长市| 通渭县| 鹤山市| 交口县| 彭州市| 新巴尔虎右旗| 湘潭市| 环江| 太仓市| 峡江县| 新邵县| 绥宁县| 当阳市| 喜德县|