找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry, Group Representations, and Quantization; J?-Dieter Hennig,Wolfgang Lücke,Ji?í Tolar Conference proceedings 1991 Spr

[復(fù)制鏈接]
樓主: Filament
11#
發(fā)表于 2025-3-23 11:41:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:38:53 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:15 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:01 | 只看該作者
Conference proceedings 1991ide variety of applications of these techniques in classical continuum physics, gauge theories, quantization procedures, and the foundations of quantum theory. The articles, written by leading scientists, address both researchers and grad- uate students in mathematics, physics, and philosophy of science.
15#
發(fā)表于 2025-3-24 06:14:32 | 只看該作者
https://doi.org/10.1007/978-3-531-92619-3The role of boundary conditions for Yang-Mills fields in spatially bounded domains is examined. It is shown that the conservation laws and the structure of the constraints depend on the choice of boundary conditions. The difficulties due to lack of any existence and uniqueness theorems for mixed problems in Yang-Mills theory are discussed.
16#
發(fā)表于 2025-3-24 08:35:53 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:51 | 只看該作者
Rund um den Aufenthalt in der Klinik,A different point. of view on discretisation of the classical theory of the Dirac equation is given. Canonical structure of the model is given, the Cauchy problem is formulated and solved, fermion doubling is discussed and a solution via time conserved constraints is proposed.
18#
發(fā)表于 2025-3-24 15:22:11 | 只看該作者
19#
發(fā)表于 2025-3-24 22:30:41 | 只看該作者
20#
發(fā)表于 2025-3-24 23:57:20 | 只看該作者
Parallel transport of phases,General features of the concept of Berry‘s phase are reported and extended to parallel transport based on curves of density operators. Product. integral representations and a natural connection are introduced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
越西县| 漾濞| 金秀| 潜江市| 甘德县| 延寿县| 南雄市| 政和县| 镇沅| 永州市| 尚志市| 临猗县| 安平县| 河池市| 中西区| 响水县| 仁怀市| 屯昌县| 山阳县| 高碑店市| 利川市| 纳雍县| 新兴县| 宝坻区| 德清县| 佛冈县| 福海县| 铅山县| 鄢陵县| 赫章县| 南开区| 长白| 和平区| 馆陶县| 土默特左旗| 双城市| 宁晋县| 青阳县| 上犹县| 温州市| 鄯善县|