找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Lie Groups; A Computational Pers Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: mountebank
51#
發(fā)表于 2025-3-30 11:00:58 | 只看該作者
Adjoint Representations and the Derivative of ,or the derivative of the matrix exponential .. This formula has an interesting application to the problem of finding a natural sets of real matrices over which the exponential is injective, which is used in numerical linear algebra.
52#
發(fā)表于 2025-3-30 13:27:33 | 只看該作者
53#
發(fā)表于 2025-3-30 17:15:41 | 只看該作者
Construction of Manifolds from Gluing Data ,ere . itself is not known. For example, this situation happens when trying to construct a surface approximating a 3D-mesh. If we let Ω.?=?..(..?∩?..)and Ω.?=?..(..?∩?..), then .. can be viewed as a “gluing map” .between two open subsets of Ω. and Ω., respectively.
54#
發(fā)表于 2025-3-31 00:35:22 | 只看該作者
Ratgeber Polyneuropathie und Restless Legsor the derivative of the matrix exponential .. This formula has an interesting application to the problem of finding a natural sets of real matrices over which the exponential is injective, which is used in numerical linear algebra.
55#
發(fā)表于 2025-3-31 02:31:58 | 只看該作者
56#
發(fā)表于 2025-3-31 06:43:05 | 只看該作者
1866-6795 and professionals alike.Builds the mathematical theory behi.This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; f
57#
發(fā)表于 2025-3-31 11:52:20 | 只看該作者
https://doi.org/10.1007/978-3-322-81143-1ere . itself is not known. For example, this situation happens when trying to construct a surface approximating a 3D-mesh. If we let Ω.?=?..(..?∩?..)and Ω.?=?..(..?∩?..), then .. can be viewed as a “gluing map” .between two open subsets of Ω. and Ω., respectively.
58#
發(fā)表于 2025-3-31 13:57:54 | 只看該作者
59#
發(fā)表于 2025-3-31 19:10:14 | 只看該作者
60#
發(fā)表于 2025-4-1 00:13:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜鼓县| 田阳县| 襄城县| 清远市| 合作市| 松桃| 偏关县| 怀集县| 同心县| 衢州市| 乐陵市| 罗田县| 武乡县| 花莲市| 辛集市| 卓尼县| 潮安县| 嘉兴市| 海伦市| 额尔古纳市| 雷山县| 广东省| 奉贤区| 元氏县| 仁布县| 惠来县| 洱源县| 淮南市| 林周县| 高雄县| 江西省| 什邡市| 英山县| 绥德县| 镶黄旗| 仙居县| 漠河县| 朝阳市| 平果县| 道孚县| 乌苏市|