找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Lie Groups; A Computational Pers Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: mountebank
51#
發(fā)表于 2025-3-30 11:00:58 | 只看該作者
Adjoint Representations and the Derivative of ,or the derivative of the matrix exponential .. This formula has an interesting application to the problem of finding a natural sets of real matrices over which the exponential is injective, which is used in numerical linear algebra.
52#
發(fā)表于 2025-3-30 13:27:33 | 只看該作者
53#
發(fā)表于 2025-3-30 17:15:41 | 只看該作者
Construction of Manifolds from Gluing Data ,ere . itself is not known. For example, this situation happens when trying to construct a surface approximating a 3D-mesh. If we let Ω.?=?..(..?∩?..)and Ω.?=?..(..?∩?..), then .. can be viewed as a “gluing map” .between two open subsets of Ω. and Ω., respectively.
54#
發(fā)表于 2025-3-31 00:35:22 | 只看該作者
Ratgeber Polyneuropathie und Restless Legsor the derivative of the matrix exponential .. This formula has an interesting application to the problem of finding a natural sets of real matrices over which the exponential is injective, which is used in numerical linear algebra.
55#
發(fā)表于 2025-3-31 02:31:58 | 只看該作者
56#
發(fā)表于 2025-3-31 06:43:05 | 只看該作者
1866-6795 and professionals alike.Builds the mathematical theory behi.This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; f
57#
發(fā)表于 2025-3-31 11:52:20 | 只看該作者
https://doi.org/10.1007/978-3-322-81143-1ere . itself is not known. For example, this situation happens when trying to construct a surface approximating a 3D-mesh. If we let Ω.?=?..(..?∩?..)and Ω.?=?..(..?∩?..), then .. can be viewed as a “gluing map” .between two open subsets of Ω. and Ω., respectively.
58#
發(fā)表于 2025-3-31 13:57:54 | 只看該作者
59#
發(fā)表于 2025-3-31 19:10:14 | 只看該作者
60#
發(fā)表于 2025-4-1 00:13:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新郑市| 水富县| 汾西县| 旌德县| 思茅市| 达孜县| 松桃| 宜君县| 佳木斯市| 宁陕县| 新干县| 丹凤县| 忻州市| 富宁县| 延边| 遵化市| 新郑市| 东源县| 崇信县| 太原市| 京山县| 元阳县| 江口县| 专栏| 万全县| 井研县| 吴堡县| 长治县| 上虞市| 扬中市| 东港市| 东阳市| 行唐县| 广平县| 和林格尔县| 增城市| 额敏县| 汉沽区| 忻州市| 榆林市| 布拖县|