找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Lie Groups; A Computational Pers Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: mountebank
41#
發(fā)表于 2025-3-28 14:37:15 | 只看該作者
The Concept of Management Effectivenesstroduces the concept of a group acting on a set, and defines the Grassmannians and Stiefel manifolds as homogenous manifolds arising from group actions of Lie groups. The last section provides an overview of topological groups, of which Lie groups are a special example, and contains more advanced ma
42#
發(fā)表于 2025-3-28 19:33:58 | 只看該作者
https://doi.org/10.1007/978-3-322-81143-1ifolds, it is necessary to generalize the concept of a manifold to spaces that are not a priori embedded in some .. The basic idea is still that whatever a manifold is, it is a topological space that can be covered by a collection of open subsets .., where each .. is isomorphic to some “standard mod
43#
發(fā)表于 2025-3-28 22:53:50 | 只看該作者
https://doi.org/10.1007/978-3-322-81143-1ome indirect information about the overlap of the domains .. of the local charts defining our manifold . in terms of the transition functions . but where . itself is not known. For example, this situation happens when trying to construct a surface approximating a 3D-mesh. If we let Ω.?=?..(..?∩?..)a
44#
發(fā)表于 2025-3-29 06:00:25 | 只看該作者
45#
發(fā)表于 2025-3-29 08:32:55 | 只看該作者
46#
發(fā)表于 2025-3-29 14:51:33 | 只看該作者
47#
發(fā)表于 2025-3-29 17:50:21 | 只看該作者
Rating von Einzelhandelsimmobilien.?≥?3. Such a generalization does exist and was first proposed by Riemann. However, Riemann’s seminal paper published in 1868 two years after his death only introduced the sectional curvature, and did not contain any proofs or any general methods for computing the sectional curvature. Fifty years or
48#
發(fā)表于 2025-3-29 22:43:14 | 只看該作者
https://doi.org/10.1057/9780230005907 challenge that we are facing is that unless our readers are already familiar with manifolds, the amount of basic differential geometry required to define Lie groups and Lie algebras in full generality is overwhelming.
49#
發(fā)表于 2025-3-30 02:35:31 | 只看該作者
Introduction to Manifolds and Lie Groups challenge that we are facing is that unless our readers are already familiar with manifolds, the amount of basic differential geometry required to define Lie groups and Lie algebras in full generality is overwhelming.
50#
發(fā)表于 2025-3-30 08:03:57 | 只看該作者
Textbook 2020graduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寻乌县| 慈溪市| 郁南县| 孝义市| 四子王旗| 牡丹江市| 洪湖市| 宜阳县| 会同县| 枣阳市| 西乌珠穆沁旗| 云梦县| 高台县| 绵阳市| 明光市| 定州市| 沙雅县| 信阳市| 南漳县| 利川市| 四子王旗| 祁东县| 古交市| 遵义县| 舒城县| 龙州县| 仙居县| 简阳市| 神池县| 丰顺县| 景泰县| 赣州市| 三都| 休宁县| 诸城市| 武隆县| 青海省| 射洪县| 沧州市| 桐梓县| 陕西省|