找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and Lie Groups; A Second Course Jean Gallier,Jocelyn Quaintance Textbook 2020 Springer Nature Switzerland AG 2020 Dif

[復制鏈接]
樓主: 手套
31#
發(fā)表于 2025-3-26 23:05:55 | 只看該作者
Ein Ausflug in unser Immunsystemction of the unit complex numbers .(1) on . and the action of the unit quaternions .(2) on . (., the action is defined in terms of multiplication in a larger algebra containing both the group .(.) and .). The group .(.), called a ., is defined as a certain subgroup of units of an algebra Cl., the .
32#
發(fā)表于 2025-3-27 02:03:37 | 只看該作者
33#
發(fā)表于 2025-3-27 06:30:56 | 只看該作者
Geometry and Computinghttp://image.papertrans.cn/d/image/278753.jpg
34#
發(fā)表于 2025-3-27 10:59:52 | 只看該作者
https://doi.org/10.1007/978-3-030-46047-1Differential geometry for computing; Differential geometry for geometry processing; Differential geome
35#
發(fā)表于 2025-3-27 15:59:56 | 只看該作者
978-3-030-46049-5Springer Nature Switzerland AG 2020
36#
發(fā)表于 2025-3-27 19:51:27 | 只看該作者
https://doi.org/10.1007/3-7985-1570-0that each of ..(..) and . contains a countable family of very nice finite-dimensional subspaces . (and .), where . is the space of (real) . on .., that is, the restrictions of the harmonic homogeneous polynomials of degree . (in .?+?1 real variables) to .. (and similarly for .); these polynomials sa
37#
發(fā)表于 2025-3-27 22:05:08 | 只看該作者
38#
發(fā)表于 2025-3-28 06:00:50 | 只看該作者
39#
發(fā)表于 2025-3-28 09:32:18 | 只看該作者
Spherical Harmonics and Linear Representations of Lie Groups,that each of ..(..) and . contains a countable family of very nice finite-dimensional subspaces . (and .), where . is the space of (real) . on .., that is, the restrictions of the harmonic homogeneous polynomials of degree . (in .?+?1 real variables) to .. (and similarly for .); these polynomials sa
40#
發(fā)表于 2025-3-28 13:48:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
德昌县| 山西省| 襄汾县| 石景山区| 舟山市| 湛江市| 兴业县| 延吉市| 阳信县| 奉贤区| 汾阳市| 陈巴尔虎旗| 高密市| 繁昌县| 政和县| 左权县| 古浪县| 灵山县| 杭州市| 囊谦县| 竹山县| 沈阳市| 湖北省| 佛山市| 扬中市| 会泽县| 衢州市| 普安县| 永定县| 射阳县| 望江县| 闵行区| 封丘县| 马边| 昌图县| 焉耆| 甘谷县| 宜川县| 尉犁县| 佛山市| 额尔古纳市|