找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[復(fù)制鏈接]
樓主: 你太謙虛
21#
發(fā)表于 2025-3-25 04:07:07 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:03 | 只看該作者
Book 1999d as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several i
23#
發(fā)表于 2025-3-25 13:07:17 | 只看該作者
Differential Galois Theory,ility” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in t
24#
發(fā)表于 2025-3-25 16:02:04 | 只看該作者
25#
發(fā)表于 2025-3-25 22:30:06 | 只看該作者
Three Models,the Sitnikov system in celestial mechanics. We note that, from the differential Galois theory of Chapter 2 (we shall need only the theorem of Kimura and the algorithm of Kovacic) and from our results of Chapter 4, the methods proposed here are completely systematic and elementary. In our opinion, th
26#
發(fā)表于 2025-3-26 02:01:13 | 只看該作者
,An Application of the Lamé Equation,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapt
27#
發(fā)表于 2025-3-26 06:00:25 | 只看該作者
A Connection with Chaotic Dynamics,c differential Galois criterion of non-integrability based on the analysis in the . phase space of the variational equations along a particular integral curve. This problem was proposed in Section 6.4 (Question 2).
28#
發(fā)表于 2025-3-26 12:10:39 | 只看該作者
29#
發(fā)表于 2025-3-26 14:41:00 | 只看該作者
Maria Luisa De Rimini,Giovanni Borrelligrability is well defined for these systems, it is very important to clarify what kind of regularity is allowed for the first integrals: differentiability or analyticity in the real situation, analytic, meromorphic or algebraic (meromorphic and meromorphic at infinity) first integrals in the complex setting.
30#
發(fā)表于 2025-3-26 20:02:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红河县| 沙洋县| 乌拉特前旗| 锡林浩特市| 原阳县| 莲花县| 利川市| 峨边| 福贡县| 商洛市| 铜川市| 新郑市| 镇安县| 塔河县| 伊宁市| 宜章县| 黄冈市| 崇礼县| 清涧县| 黄山市| 新宾| 莆田市| 宁陕县| 乌鲁木齐市| 阜城县| 都江堰市| 宜章县| 德保县| 无锡市| 东兰县| 馆陶县| 河南省| 民乐县| 平谷区| 龙泉市| 延庆县| 东乡族自治县| 西峡县| 福泉市| 普陀区| 会同县|