找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[復(fù)制鏈接]
樓主: 你太謙虛
11#
發(fā)表于 2025-3-23 12:59:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:39:43 | 只看該作者
,An Application of the Lamé Equation,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).
13#
發(fā)表于 2025-3-23 22:01:04 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:28 | 只看該作者
https://doi.org/10.1007/978-3-0348-8718-2Dynamical System; Galois group; Galois theory; algebra; differential algebra; differential equation; dynam
15#
發(fā)表于 2025-3-24 04:07:00 | 只看該作者
https://doi.org/10.1007/978-3-031-54196-4ility” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in t
16#
發(fā)表于 2025-3-24 07:41:44 | 只看該作者
Maria Luisa De Rimini,Giovanni Borrelliy i.e., Liouville integrability: the existence of . independent first integrals in involution, . being the number of degrees of freedom. Although integrability is well defined for these systems, it is very important to clarify what kind of regularity is allowed for the first integrals: differentiabi
17#
發(fā)表于 2025-3-24 13:56:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:38:14 | 只看該作者
The Bone Pathway: 223Ra-Dichloride,c differential Galois criterion of non-integrability based on the analysis in the . phase space of the variational equations along a particular integral curve. This problem was proposed in Section 6.4 (Question 2).
20#
發(fā)表于 2025-3-25 02:55:35 | 只看該作者
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳春市| 尼玛县| 台南县| 黎城县| 德州市| 锡林浩特市| 丹巴县| 肇州县| 汕头市| 枞阳县| 孝感市| 南召县| 栾川县| 永新县| 顺昌县| 双城市| 龙井市| 翼城县| 兴山县| 阜城县| 思茅市| 泗水县| 宿松县| 松桃| 安阳县| 宜兰市| 泰和县| 广平县| 祥云县| 获嘉县| 纳雍县| 徐水县| 莒南县| 三穗县| 永清县| 铁岭县| 英德市| 青海省| 合水县| 石家庄市| 克山县|