找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[復(fù)制鏈接]
樓主: 你太謙虛
11#
發(fā)表于 2025-3-23 12:59:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:39:43 | 只看該作者
,An Application of the Lamé Equation,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).
13#
發(fā)表于 2025-3-23 22:01:04 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:28 | 只看該作者
https://doi.org/10.1007/978-3-0348-8718-2Dynamical System; Galois group; Galois theory; algebra; differential algebra; differential equation; dynam
15#
發(fā)表于 2025-3-24 04:07:00 | 只看該作者
https://doi.org/10.1007/978-3-031-54196-4ility” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in t
16#
發(fā)表于 2025-3-24 07:41:44 | 只看該作者
Maria Luisa De Rimini,Giovanni Borrelliy i.e., Liouville integrability: the existence of . independent first integrals in involution, . being the number of degrees of freedom. Although integrability is well defined for these systems, it is very important to clarify what kind of regularity is allowed for the first integrals: differentiabi
17#
發(fā)表于 2025-3-24 13:56:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:38:14 | 只看該作者
The Bone Pathway: 223Ra-Dichloride,c differential Galois criterion of non-integrability based on the analysis in the . phase space of the variational equations along a particular integral curve. This problem was proposed in Section 6.4 (Question 2).
20#
發(fā)表于 2025-3-25 02:55:35 | 只看該作者
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐城市| 铁岭县| 石阡县| 永州市| 古浪县| 轮台县| 廊坊市| 龙陵县| 乐昌市| 彭水| 锦屏县| 德兴市| 铜川市| 唐河县| 博湖县| 天津市| 新建县| 唐河县| 阿拉善左旗| 湖北省| 莆田市| 富顺县| 靖西县| 台南县| 托里县| 德庆县| 克什克腾旗| 林芝县| 阿拉尔市| 临猗县| 吉首市| 黔南| 辽源市| 怀化市| 连云港市| 喀喇| 航空| 山东| 自治县| 琼结县| 西城区|