找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[復(fù)制鏈接]
樓主: 你太謙虛
11#
發(fā)表于 2025-3-23 12:59:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:39:43 | 只看該作者
,An Application of the Lamé Equation,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).
13#
發(fā)表于 2025-3-23 22:01:04 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:28 | 只看該作者
https://doi.org/10.1007/978-3-0348-8718-2Dynamical System; Galois group; Galois theory; algebra; differential algebra; differential equation; dynam
15#
發(fā)表于 2025-3-24 04:07:00 | 只看該作者
https://doi.org/10.1007/978-3-031-54196-4ility” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in t
16#
發(fā)表于 2025-3-24 07:41:44 | 只看該作者
Maria Luisa De Rimini,Giovanni Borrelliy i.e., Liouville integrability: the existence of . independent first integrals in involution, . being the number of degrees of freedom. Although integrability is well defined for these systems, it is very important to clarify what kind of regularity is allowed for the first integrals: differentiabi
17#
發(fā)表于 2025-3-24 13:56:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:38:14 | 只看該作者
The Bone Pathway: 223Ra-Dichloride,c differential Galois criterion of non-integrability based on the analysis in the . phase space of the variational equations along a particular integral curve. This problem was proposed in Section 6.4 (Question 2).
20#
發(fā)表于 2025-3-25 02:55:35 | 只看該作者
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永昌县| 鄱阳县| 汕尾市| 肥乡县| 叙永县| 清流县| 星座| 九台市| 宁海县| 呼伦贝尔市| 手游| 平凉市| 长顺县| 河池市| 台安县| 平武县| 崇仁县| 阿勒泰市| 平武县| 河间市| 安义县| 和平区| 甘德县| 长丰县| 改则县| 田阳县| 江门市| 合山市| 三明市| 灌阳县| 稻城县| 武定县| 洪雅县| 吴川市| 桓台县| 玛纳斯县| 且末县| 鄯善县| 临城县| 巴塘县| 云林县|