找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations on Manifolds and Mathematical Physics; Dedicated to the Mem Vladimir M. Manuilov,Alexander S. Mishchenko,Weipi Book

[復(fù)制鏈接]
樓主: 萬(wàn)能
21#
發(fā)表于 2025-3-25 03:36:30 | 只看該作者
Trends in Mathematicshttp://image.papertrans.cn/d/image/278695.jpg
22#
發(fā)表于 2025-3-25 08:50:18 | 只看該作者
Laboratory Studies of Rydberg AtomsWe construct a double asymptotic expansion of the resolving operator for the linearized equations of gas dynamics. We also describe the asymptotics of the solution of the Cauchy problem with localized initial data.
23#
發(fā)表于 2025-3-25 15:14:05 | 只看該作者
24#
發(fā)表于 2025-3-25 15:51:23 | 只看該作者
Incoherent Scatter Radar (ISR) SystemsWe study boundary value problems for the wave equation with conditions on the entire boundary and obtain sufficient conditions for the Fredholm solvability of the problem in suitable function spaces. It turns out that these conditions depend on the properties of the geodesic flow.
25#
發(fā)表于 2025-3-25 23:16:30 | 只看該作者
Incoherent Scatter Radar (ISR) SystemsWe consider first order elliptic differential operators acting on sections of smooth vector bundles over compact manifolds and study certain invariants derived from the analysis of these operators, namely, the eta invariant (in the case of self-adjoint operators) and the index.
26#
發(fā)表于 2025-3-26 01:30:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:22:01 | 只看該作者
O-Ton-Bericht/Bericht mit EinblendungenAnisotropic second-order elliptic equations with variable exponents of the nonlinearities and with right-hand side being a diffuse measure are considered in the space R.. The existence of an entropy solution in anisotropic Sobolev–Orlicz spaces with variable exponents is proved. This entropy solution is shown to be a renormalized solution.
28#
發(fā)表于 2025-3-26 09:54:58 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:12 | 只看該作者
30#
發(fā)表于 2025-3-26 20:51:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 17:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
含山县| 洞头县| 上高县| 商丘市| 府谷县| 莱阳市| 清远市| 蒲江县| 康马县| 易门县| 阿图什市| 桦川县| 娱乐| 揭东县| 福清市| 陵川县| 静海县| 安国市| 体育| 玛曲县| 蒙城县| 威海市| 米泉市| 中西区| 旺苍县| 称多县| 葵青区| 双城市| 台湾省| 霍林郭勒市| 呈贡县| 尖扎县| 洞口县| 金乡县| 宁陵县| 新民市| 邵阳市| 涿州市| 海口市| 贵南县| 恩平市|