找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations on Manifolds and Mathematical Physics; Dedicated to the Mem Vladimir M. Manuilov,Alexander S. Mishchenko,Weipi Book

[復制鏈接]
查看: 12008|回復: 68
樓主
發(fā)表于 2025-3-21 17:51:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Differential Equations on Manifolds and Mathematical Physics
副標題Dedicated to the Mem
編輯Vladimir M. Manuilov,Alexander S. Mishchenko,Weipi
視頻videohttp://file.papertrans.cn/279/278695/278695.mp4
概述Dedicated to Boris Sternin.Presents a wide range of papers on PDEs and related topics.Written by experts in the field
叢書名稱Trends in Mathematics
圖書封面Titlebook: Differential Equations on Manifolds and Mathematical Physics; Dedicated to the Mem Vladimir M. Manuilov,Alexander S. Mishchenko,Weipi Book
描述This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held?in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds?and their applications in mathematical physics, geometry, topology, and complex analysis..The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate?students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas?of mathematics..
出版日期Book 2021
關鍵詞partial differential equations; elliptic theory; noncommutative geometry; asymptotic methods; mathematic
版次1
doihttps://doi.org/10.1007/978-3-030-37326-9
isbn_softcover978-3-030-37328-3
isbn_ebook978-3-030-37326-9Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Differential Equations on Manifolds and Mathematical Physics影響因子(影響力)




書目名稱Differential Equations on Manifolds and Mathematical Physics影響因子(影響力)學科排名




書目名稱Differential Equations on Manifolds and Mathematical Physics網(wǎng)絡公開度




書目名稱Differential Equations on Manifolds and Mathematical Physics網(wǎng)絡公開度學科排名




書目名稱Differential Equations on Manifolds and Mathematical Physics被引頻次




書目名稱Differential Equations on Manifolds and Mathematical Physics被引頻次學科排名




書目名稱Differential Equations on Manifolds and Mathematical Physics年度引用




書目名稱Differential Equations on Manifolds and Mathematical Physics年度引用學科排名




書目名稱Differential Equations on Manifolds and Mathematical Physics讀者反饋




書目名稱Differential Equations on Manifolds and Mathematical Physics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:33:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:46:29 | 只看該作者
5#
發(fā)表于 2025-3-22 09:33:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:18:45 | 只看該作者
7#
發(fā)表于 2025-3-22 17:41:23 | 只看該作者
Complete Semiclassical Spectral Asymptotics for Periodic and Almost Periodic Perturbations of ConstεB(x,hD), where A. is an elliptic operator and B(x,hD) is a periodic or an almost periodic perturbation..In particular, a complete semiclassical asymptotics of the integrated density of states also holds. Further, we consider generalizations.
8#
發(fā)表于 2025-3-23 00:31:12 | 只看該作者
9#
發(fā)表于 2025-3-23 01:24:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:09:34 | 只看該作者
Derivations of Group Algebras and Hochschild Cohomology,2018). The Hochschild homology and cohomology of a group algebra can be described via the homology and cohomology of the classifying space of the adjoint action groupoid of the group under a suitable assumption on the finiteness of supports of the cohomology groups. The difference between homology a
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
福泉市| 新平| 邵武市| 越西县| 定襄县| 南郑县| 志丹县| 胶州市| 视频| 漳平市| 灵璧县| 丁青县| 东乌珠穆沁旗| 香河县| 阳泉市| 西藏| 县级市| 博白县| 鹿邑县| 衡水市| 雅江县| 永清县| 农安县| 南投县| 澄城县| 台南市| 兰坪| 铜梁县| 宁武县| 峨眉山市| 荥阳市| 黔西县| 洮南市| 武威市| 富裕县| 黄石市| 岢岚县| 武功县| 凤翔县| 黄冈市| 杭州市|