找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Analysis on Complex Manifolds; Raymond O. Wells Textbook 2008Latest edition Springer-Verlag New York 2008 Analysis.Differenzi

[復(fù)制鏈接]
樓主: Asphyxia
21#
發(fā)表于 2025-3-25 03:41:02 | 只看該作者
22#
發(fā)表于 2025-3-25 08:17:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:54 | 只看該作者
Raymond O. WellsPresents a concise introduction to the basics of analysis and geometry on compact complex manifolds.Provides tools which are the building blocks of many mathematical developments over the past 30 year
24#
發(fā)表于 2025-3-25 15:54:23 | 只看該作者
25#
發(fā)表于 2025-3-25 20:23:14 | 只看該作者
26#
發(fā)表于 2025-3-26 03:47:10 | 只看該作者
978-1-4419-2535-0Springer-Verlag New York 2008
27#
發(fā)表于 2025-3-26 06:22:27 | 只看該作者
Differential Analysis on Complex Manifolds978-0-387-73892-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
28#
發(fā)表于 2025-3-26 09:12:27 | 只看該作者
Thomas Crofts,Tyrone Kirchengastthis book we are primarily interested in . and .. We want to study (a) the “geometry” of manifolds, (b) the analysis of functions (or more general objects) which are defined on manifolds, and (c) the interaction of (a) and (b). Our basic interest will be the application of techniques of real analysi
29#
發(fā)表于 2025-3-26 15:22:29 | 只看該作者
Sexual Coercion in Men’s Prisons they unify and give a mechanism for dealing with many problems concerned with passage from local information to global information. This is very useful when dealing with, say, differentiable manifolds, since locally these look like Euclidean space, and hence localized problems can be dealt with by
30#
發(fā)表于 2025-3-26 17:16:21 | 只看該作者
Quantifying Amplicons with ELISAundles. In Sec. 1 we shall give the basic definitions of the Hermitian analogues of the classical concepts of (Riemannian) metric, connection, and curvature. This is carried out in the context of differentiable C-vector bundles over a differentiable manifold .. More specific formulas are obtained in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
页游| 吴忠市| 武川县| 北宁市| 镇安县| 宣恩县| 长沙县| 兰坪| 梅河口市| 饶河县| 洱源县| 抚顺市| 达拉特旗| 西藏| 邵武市| 扎赉特旗| 龙川县| 五峰| 遂溪县| 德化县| 江门市| 称多县| 顺平县| 屏南县| 白朗县| 石景山区| 陇川县| 眉山市| 天津市| 石棉县| 于田县| 东港市| 怀安县| 龙里县| 剑川县| 巴青县| 洛浦县| 抚州市| 东平县| 江油市| 峨眉山市|