找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Analysis on Complex Manifolds; Raymond O. Wells Textbook 2008Latest edition Springer-Verlag New York 2008 Analysis.Differenzi

[復(fù)制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 12:04:15 | 只看該作者
Textbook 2008Latest edition detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact
12#
發(fā)表于 2025-3-23 16:23:10 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:54:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:10:28 | 只看該作者
,Kodaira’s Projective Embedding Theorem,rem asserts that projective algebraic manifolds are indeed ., i.e., defined by the zeros of homogeneous polynomials. Thus the combination of these two theorems allows one to reduce problems of analysis to ones of algebra (cf. Serre‘s famous paper [2] in which this program of comparison is carried out in great detail).
16#
發(fā)表于 2025-3-24 10:18:37 | 只看該作者
0072-5285 ocks of many mathematical developments over the past 30 year.In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles
17#
發(fā)表于 2025-3-24 13:52:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:25 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:44 | 只看該作者
Differential Geometry,undles. In Sec. 1 we shall give the basic definitions of the Hermitian analogues of the classical concepts of (Riemannian) metric, connection, and curvature. This is carried out in the context of differentiable C-vector bundles over a differentiable manifold .. More specific formulas are obtained in
20#
發(fā)表于 2025-3-25 00:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 新竹市| 吴堡县| 新田县| 麻城市| 白山市| 永登县| 米林县| 福泉市| 扎囊县| 崇义县| 济源市| 乌兰县| 长垣县| 湟源县| 亳州市| 澎湖县| 唐海县| 会理县| 临海市| 莱州市| 靖州| 贵溪市| 香港| 静安区| 万安县| 利川市| 莎车县| 内丘县| 大余县| 遂昌县| 鄱阳县| 裕民县| 遵义县| 武川县| 南充市| 重庆市| 特克斯县| 兴义市| 桓仁| 康定县|