找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Analysis on Complex Manifolds; Raymond O. Wells Textbook 2008Latest edition Springer-Verlag New York 2008 Analysis.Differenzi

[復(fù)制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 12:04:15 | 只看該作者
Textbook 2008Latest edition detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact
12#
發(fā)表于 2025-3-23 16:23:10 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:54:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:10:28 | 只看該作者
,Kodaira’s Projective Embedding Theorem,rem asserts that projective algebraic manifolds are indeed ., i.e., defined by the zeros of homogeneous polynomials. Thus the combination of these two theorems allows one to reduce problems of analysis to ones of algebra (cf. Serre‘s famous paper [2] in which this program of comparison is carried out in great detail).
16#
發(fā)表于 2025-3-24 10:18:37 | 只看該作者
0072-5285 ocks of many mathematical developments over the past 30 year.In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles
17#
發(fā)表于 2025-3-24 13:52:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:25 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:44 | 只看該作者
Differential Geometry,undles. In Sec. 1 we shall give the basic definitions of the Hermitian analogues of the classical concepts of (Riemannian) metric, connection, and curvature. This is carried out in the context of differentiable C-vector bundles over a differentiable manifold .. More specific formulas are obtained in
20#
發(fā)表于 2025-3-25 00:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 政和县| 即墨市| 阿图什市| 林甸县| 汾西县| 潜江市| 临沭县| 广东省| 屏山县| 丰台区| 逊克县| 吴江市| 彩票| 宝兴县| 江西省| 文安县| 阳泉市| 沾益县| 方城县| 大连市| 米泉市| 咸宁市| 丰原市| 凭祥市| 海宁市| 聂拉木县| 张家港市| 平顶山市| 柳河县| 青阳县| 边坝县| 阳高县| 汾阳市| 通州市| 集安市| 唐海县| 凉城县| 富锦市| 乌审旗| 威远县|