找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable and Complex Dynamics of Several Variables; Pei-Chu Hu,Chung-Chun Yang Book 1999 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:08:17 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/d/image/278637.jpg
12#
發(fā)表于 2025-3-23 15:05:25 | 只看該作者
13#
發(fā)表于 2025-3-23 19:41:31 | 只看該作者
14#
發(fā)表于 2025-3-24 02:05:46 | 只看該作者
Alyson Campbell,Stephen FarrierIn this chapter, we will discuss some topics which are related to the Fatou-Julia type theory, say, Hamiltonian systems, linearization, ..-normality, and so on.
15#
發(fā)表于 2025-3-24 04:46:08 | 只看該作者
Intermediate Statistics and Probability,In this chapter, we will introduce the Fatou-Julia theory on ?. obtained by Fornaess and Sibony. Here we mainly introduce the theory on holomorphic mappings. For the case of meromorphic mappings, see their paper [85]. We also prove the Ueda’s theorem related to Conjecture 5.2, and simply introduce the Newton’s method.
16#
發(fā)表于 2025-3-24 09:04:34 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:18 | 只看該作者
https://doi.org/10.1057/9781137447739In this appendix, we will introduce some notations, terminologies and basic facts used in dynamics.
18#
發(fā)表于 2025-3-24 15:09:09 | 只看該作者
19#
發(fā)表于 2025-3-24 21:53:54 | 只看該作者
Ergodic theorems and invariant sets,In this chapter, we introduce basic notations and theorems in ergodic theory and define some invariant sets which are closely related to ergodic theorems. Also we will establish relations between these invariant sets and some quantities similar to entropies.
20#
發(fā)表于 2025-3-25 00:08:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平和县| 阿图什市| 金平| 望都县| 嵩明县| 纳雍县| 龙里县| 宁城县| 泾源县| 南康市| 称多县| 城口县| 玉田县| 罗定市| 罗山县| 金昌市| 杭州市| 雷山县| 张北县| 景德镇市| 西吉县| 竹北市| 淅川县| 聂拉木县| 常山县| 谷城县| 鹤山市| 镇远县| 黄陵县| 奇台县| 铁岭市| 南昌县| 佛山市| 信宜市| 陆丰市| 隆昌县| 昌宁县| 安岳县| 雅江县| 兴宁市| 湖口县|