找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable and Complex Dynamics of Several Variables; Pei-Chu Hu,Chung-Chun Yang Book 1999 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
查看: 23588|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:39:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Differentiable and Complex Dynamics of Several Variables
編輯Pei-Chu Hu,Chung-Chun Yang
視頻videohttp://file.papertrans.cn/279/278637/278637.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Differentiable and Complex Dynamics of Several Variables;  Pei-Chu Hu,Chung-Chun Yang Book 1999 Springer Science+Business Media Dordrecht 1
描述The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton‘s Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2‘m(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x‘ Further, W. R.
出版日期Book 1999
關(guān)鍵詞analysis on manifolds; differential equation; differential geometry; dynamical systems; global analysis;
版次1
doihttps://doi.org/10.1007/978-94-015-9299-4
isbn_softcover978-90-481-5246-9
isbn_ebook978-94-015-9299-4
copyrightSpringer Science+Business Media Dordrecht 1999
The information of publication is updating

書目名稱Differentiable and Complex Dynamics of Several Variables影響因子(影響力)




書目名稱Differentiable and Complex Dynamics of Several Variables影響因子(影響力)學(xué)科排名




書目名稱Differentiable and Complex Dynamics of Several Variables網(wǎng)絡(luò)公開度




書目名稱Differentiable and Complex Dynamics of Several Variables網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differentiable and Complex Dynamics of Several Variables被引頻次




書目名稱Differentiable and Complex Dynamics of Several Variables被引頻次學(xué)科排名




書目名稱Differentiable and Complex Dynamics of Several Variables年度引用




書目名稱Differentiable and Complex Dynamics of Several Variables年度引用學(xué)科排名




書目名稱Differentiable and Complex Dynamics of Several Variables讀者反饋




書目名稱Differentiable and Complex Dynamics of Several Variables讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:42:18 | 只看該作者
地板
發(fā)表于 2025-3-22 05:10:17 | 只看該作者
Alyson Campbell,Stephen Farrierrics, etc) are .. unless stated to the contrary. It is well known that such complex manifolds under consideration are metrizable. A customary and useful device is to metrize these by imposing on them a Hermitian metric ., from which one derives a distance function .(,) ≡ ..(,) which converts the manifold into a metric space.
5#
發(fā)表于 2025-3-22 10:56:58 | 只看該作者
Fatou-Julia type theory,atisfied by the cascade {..} generated by .. Roughly, given a point ., if there exists a neighborhood . of . such that {..} is of a property . on ., we write . F.(.). Obviously, F.(.) is open. Set ..(.) = .... In many cases, ... and ... are invariant sets on .. We will discuss these sets for some property ..
6#
發(fā)表于 2025-3-22 13:53:23 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:35:22 | 只看該作者
9#
發(fā)表于 2025-3-23 02:55:22 | 只看該作者
10#
發(fā)表于 2025-3-23 05:34:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建昌县| 阿克陶县| 新源县| 勃利县| 莱阳市| 吐鲁番市| 九江市| 福海县| 临沧市| 遵义市| 庐江县| 东兰县| 吉木乃县| 勃利县| 安丘市| 合阳县| 东乌珠穆沁旗| 渝中区| 南昌市| 宝山区| 连江县| 天全县| 游戏| 瑞金市| 永仁县| 留坝县| 泽州县| 兴安县| 文昌市| 普格县| 芦山县| 武城县| 濉溪县| 苏尼特右旗| 祁门县| 武隆县| 永修县| 北宁市| 柳林县| 巴里| 康马县|