找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Difference Sets, Sequences and their Correlation Properties; A. Pott,P. V. Kumar,D. Jungnickel Book 1999 Springer Science+Business Media D

[復(fù)制鏈接]
樓主: 挑染
31#
發(fā)表于 2025-3-26 23:44:54 | 只看該作者
Kristin Baynton,Belinda Jackson. Golay (.) introduced the . as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture is still open. In this paper we investigate several classes of sequences coming from cyclic difference sets and determine their asymptotic merit factor.
32#
發(fā)表于 2025-3-27 01:32:19 | 只看該作者
Euijune Kim,Younghyun John Kwon abelian group ., the parameters of a putative difference set . in . with cardinality ., whether . exists or not, a construction when . does exist, and a nonexistence proof when . does not exist. At time of publication there were some 25 entries which were open, i.e. the existence or nonexistence of
33#
發(fā)表于 2025-3-27 07:16:58 | 只看該作者
https://doi.org/10.1007/978-981-10-0300-4ive. Although the role of non-abelian groups in algebraic combinatorics and finite geometry goes back at least to Dickson (.), genuinely non-abelian difference sets have only appeared in the last few years, see Liebler and Smith (.), Smith (.).
34#
發(fā)表于 2025-3-27 10:22:23 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:00 | 只看該作者
Michele Rostan,Massimiliano Vairae zero. Such an array is equivalent to a group developed weighing matrix. These can therefore be considered as elements in the group ring ?. for a suitable abelian group .. Using this approach, we provide a comprehensive survey of these objects, restricting our attention mostly to the one-and two-dimensional (so called cyclic and bicyclic) cases.
36#
發(fā)表于 2025-3-27 18:27:21 | 只看該作者
37#
發(fā)表于 2025-3-27 22:46:45 | 只看該作者
Performance Indicators and Benchmarking,Hadamard and Chen families. We survey recent work which uses recursive techniques to unify these difference set families, placing particular emphasis on examples. This unified approach has also proved useful for studying semi-regular relative difference sets and for constructing new symmetric designs.
38#
發(fā)表于 2025-3-28 05:34:35 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:03 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乃东县| 桃园市| 疏附县| 宜兰县| 井研县| 周宁县| 长葛市| 民和| 永州市| 南郑县| 凤山市| 临西县| 大渡口区| 贡嘎县| 沂水县| 广东省| 莱芜市| 双城市| 陈巴尔虎旗| 那坡县| 遂昌县| 银川市| 辽宁省| 凌源市| 泾源县| 武穴市| 寻乌县| 江津市| 涞源县| 叙永县| 贡山| 滕州市| 呼图壁县| 上杭县| 聂拉木县| 北川| 唐河县| 康定县| 东乡族自治县| 连平县| 琼结县|