找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diagnostic Methods in Time Series; Fumiya Akashi,Masanobu Taniguchi,Tomoyuki Amano Book 2021 The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
樓主: amateur
21#
發(fā)表于 2025-3-25 03:31:10 | 只看該作者
22#
發(fā)表于 2025-3-25 09:30:54 | 只看該作者
23#
發(fā)表于 2025-3-25 12:56:29 | 只看該作者
24#
發(fā)表于 2025-3-25 17:29:47 | 只看該作者
25#
發(fā)表于 2025-3-25 21:02:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:02:59 | 只看該作者
https://doi.org/10.1007/978-1-4939-6506-9tic processes. This relies on the asymptotic theory for higher order asymptotics, Bartlett adjustment, empirical likelihood method, asymptotic efficiency, robustness, etc. For these problems, some useful fundamentals and tools will be given. Throughout this book, we denote by ., ., and ., the set of
27#
發(fā)表于 2025-3-26 07:59:41 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:02 | 只看該作者
https://doi.org/10.1007/978-1-4419-7085-5near adjustment is provided for them which greatly improves the . approximation to their distribution and allows a subsequent Bartlett type adjustment. Numerical studies confirm the benefits of the adjustments on the accuracy and on the power of tests whose statistics belong to ..
29#
發(fā)表于 2025-3-26 16:20:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:31 | 只看該作者
Systematic Approach for Portmanteau Tests,distributed for any finite .. In view of the likelihood ratio, we also mention the asymptotics of a natural Whittle likelihood ratio test . which is always asymptotically chi-square distributed. Its local power is also evaluated. Numerical studies compare . with other famous portmanteau tests Ljung–
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福清市| 东乡县| 石阡县| 西华县| 申扎县| 万安县| 基隆市| 靖边县| 台中市| 丰城市| 会昌县| 仁怀市| 浙江省| 浠水县| 新邵县| 武邑县| 剑阁县| 普格县| 凯里市| 东乌珠穆沁旗| 庄河市| 广东省| 左贡县| 新干县| 丘北县| 云南省| 镇原县| 将乐县| 延边| 江城| 仪陇县| 渭南市| 佛山市| 德保县| 高州市| 涞源县| 阿巴嘎旗| 莱州市| 虎林市| 鹰潭市| 克拉玛依市|