找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
樓主: 烈酒
41#
發(fā)表于 2025-3-28 18:30:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:31:46 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:26 | 只看該作者
J. Vielkind,M. Schwab,F. AndersIn general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
44#
發(fā)表于 2025-3-29 04:17:31 | 只看該作者
Dynamical Systems with One Degree of Freedom,Consider a class of autonomous continuous-time dynamical systems whose state at any time can be unambiguously given by a variable . and its derivative .. The phase space of such a system is the phase plane (., .). Thus, the phase space dimension is . = 2 and the number of degrees of freedom is ..
45#
發(fā)表于 2025-3-29 10:16:45 | 只看該作者
,The Anishchenko–Astakhov Oscillator of Chaotic Self-Sustained Oscillations,In general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
46#
發(fā)表于 2025-3-29 12:18:53 | 只看該作者
https://doi.org/10.1007/978-3-319-06871-8Anishchenko-Astakhov Oscillator; Deterministic Chaos Theory; Nonlinear Dynamics Textbook; Oscillations
47#
發(fā)表于 2025-3-29 18:52:46 | 只看該作者
978-3-319-37852-7Springer International Publishing Switzerland 2014
48#
發(fā)表于 2025-3-29 20:56:11 | 只看該作者
Cesar Petri,Ralph Scorza,Chris Dardick natural sciences. It amounts to finding a law that enables us to define the future state of the system at a time . > .. when given some information on the system at the initial time ... Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe ei
49#
發(fā)表于 2025-3-30 00:55:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:29:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉萨市| 乌拉特中旗| 陇南市| 诸城市| 定兴县| 灵川县| 尉犁县| 大关县| 黄浦区| 阿克苏市| 北京市| 西乌| 蛟河市| 深州市| 科技| 驻马店市| 宁津县| 三都| 扎囊县| 兴国县| 吉木乃县| 布拖县| 绥芬河市| 牟定县| 双鸭山市| 河南省| 巴里| 临猗县| 荆门市| 桐乡市| 佛山市| 漾濞| 玉树县| 绍兴县| 铜陵市| 于都县| 平度市| 罗平县| 油尖旺区| 民勤县| 策勒县|