找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
查看: 31306|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:32:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deterministic Nonlinear Systems
副標(biāo)題A Short Course
編輯Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina
視頻videohttp://file.papertrans.cn/270/269344/269344.mp4
概述Authored by leading researchers in the field.Concise introduction and presentation, suitable as textbook and as self-study guide.Particular emphasis on systems with self-sustained oscillations and syn
叢書(shū)名稱Springer Series in Synergetics
圖書(shū)封面Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina  Textbook 2014 Springer International Pub
描述.This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. .This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research..
出版日期Textbook 2014
關(guān)鍵詞Anishchenko-Astakhov Oscillator; Deterministic Chaos Theory; Nonlinear Dynamics Textbook; Oscillations
版次1
doihttps://doi.org/10.1007/978-3-319-06871-8
isbn_softcover978-3-319-37852-7
isbn_ebook978-3-319-06871-8Series ISSN 0172-7389 Series E-ISSN 2198-333X
issn_series 0172-7389
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書(shū)目名稱Deterministic Nonlinear Systems影響因子(影響力)




書(shū)目名稱Deterministic Nonlinear Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Deterministic Nonlinear Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deterministic Nonlinear Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deterministic Nonlinear Systems被引頻次




書(shū)目名稱Deterministic Nonlinear Systems被引頻次學(xué)科排名




書(shū)目名稱Deterministic Nonlinear Systems年度引用




書(shū)目名稱Deterministic Nonlinear Systems年度引用學(xué)科排名




書(shū)目名稱Deterministic Nonlinear Systems讀者反饋




書(shū)目名稱Deterministic Nonlinear Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:40:57 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:12 | 只看該作者
,Systems with Phase Space Dimension , ≥ 3: Deterministic Chaos,uilibrium states and limit cycles increases significantly, and many of them have not yet been studied. Some saddle sets become possible, such as an equilibrium state of the saddle-focus type and a saddle limit cycle. A cycle of the saddle-focus type and a saddle torus can be realized in a phase spac
5#
發(fā)表于 2025-3-22 12:00:40 | 只看該作者
From Order to Chaos: Bifurcation Scenarios (Part I),ce of nonlinearity increases, the dynamical regime becomes more complicated. Simple attractors in the phase space of a dissipative system are replaced by more complicated ones. Under certain conditions, nonlinearity can lead to the onset of dynamical chaos. Moving along a relevant direction in the p
6#
發(fā)表于 2025-3-22 12:57:22 | 只看該作者
7#
發(fā)表于 2025-3-22 19:29:45 | 只看該作者
Robust and Nonrobust Dynamical Systems: Classification of Attractor Types,yagin systems on the plane, there appears a class of robust systems with nontrivial hyperbolicity, i.e., systems with chaotic dynamics. Chaotic attractors of robust hyperbolic systems are, in the rigorous mathematical sense, strange attractors. They usually represent some mathematical idealization a
8#
發(fā)表于 2025-3-22 23:15:00 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:22 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:44 | 只看該作者
Quasiperiodic Oscillator with Two Independent Frequencies,ct that they include two or more independent frequencies in the oscillation spectrum: . where ..(.) = ..., . = 1, 2, ., .. As a result, .(.) in (12.1) is 2.-periodic in each argument ..(.), but the quasiperiodic process itself is, in the general case, non-periodic, i.e., .(.) ≠ .(. + ..).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五峰| 文山县| 察雅县| 深泽县| 青川县| 启东市| 武汉市| 宣恩县| 合肥市| 清苑县| 揭阳市| 观塘区| 原阳县| 昭苏县| 阜阳市| 宾阳县| 西青区| 龙泉市| 大方县| 靖远县| 郑州市| 常宁市| 惠州市| 平凉市| 关岭| 泗洪县| 陆川县| 吉隆县| 和静县| 湖北省| 阿瓦提县| 同心县| 视频| 河津市| 合肥市| 都兰县| 阿坝| 女性| 偏关县| 和田县| 武鸣县|