找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependability in Sensor, Cloud, and Big Data Systems and Applications; 5th International Co Guojun Wang,Md Zakirul Alam Bhuiyan,Yizhi Ren C

[復(fù)制鏈接]
查看: 37351|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:15:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications
副標(biāo)題5th International Co
編輯Guojun Wang,Md Zakirul Alam Bhuiyan,Yizhi Ren
視頻videohttp://file.papertrans.cn/266/265695/265695.mp4
叢書(shū)名稱(chēng)Communications in Computer and Information Science
圖書(shū)封面Titlebook: Dependability in Sensor, Cloud, and Big Data Systems and Applications; 5th International Co Guojun Wang,Md Zakirul Alam Bhuiyan,Yizhi Ren C
描述This book constitutes the refereed proceedings of the 5th International Conference on?Dependability in Sensor, Cloud, and Big Data Systems and Applications, DependSys, held in Guangzhou, China, in November 2019..The volume presents 39 full papers, which were carefully reviewed and selected from 112 submissions. The papers are organized in topical sections on ?dependability and security fundamentals and technologies; dependable and secure systems; dependable and secure applications; dependability and security measures and assessments; explainable artificial inteligence for cyberspace..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computer network; computer security; data communication systems; data mining; da
版次1
doihttps://doi.org/10.1007/978-981-15-1304-6
isbn_softcover978-981-15-1303-9
isbn_ebook978-981-15-1304-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications影響因子(影響力)




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications被引頻次




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications年度引用




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications讀者反饋




書(shū)目名稱(chēng)Dependability in Sensor, Cloud, and Big Data Systems and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:01:53 | 只看該作者
Magnetic Resonance Microscopy AT9.4 Tesla,pository. We use the trained models to predict whether a mail is spam or not, and find better prediction scheme by comparing quantitative results. The experimental results show that the method of decision forest regression can get better performance and is suitable for numerical prediction.
地板
發(fā)表于 2025-3-22 08:32:14 | 只看該作者
5#
發(fā)表于 2025-3-22 08:59:28 | 只看該作者
Language and the emergence of environment the surprising shapes in restorative images preparing. To improve the exhibition of our proposed procedure we utilize the artificial bee colony to optimize and classify the feature selected or extracted by the WPD. Results shows that our method perform better to segment the curvy shapes and haemorrhagic areas in MRI images.
6#
發(fā)表于 2025-3-22 14:47:45 | 只看該作者
Dwelling, Place and Environment from video sequences; (2) feature creation, where body features are constructed using body keypoints; and (3) classifier selection when such data are used to train four different classifiers in order to determine the one that best performs. The results are analyzed on the dataset Gotcha, characterized by user and camera either in motion.
7#
發(fā)表于 2025-3-22 19:10:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:47:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:17 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:01 | 只看該作者
A Comparative Study of Two Different Spam Detection Methodspository. We use the trained models to predict whether a mail is spam or not, and find better prediction scheme by comparing quantitative results. The experimental results show that the method of decision forest regression can get better performance and is suitable for numerical prediction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 肇东市| 玛多县| 庐江县| 和龙市| 安宁市| 东乡县| 扶风县| 黔南| 乌拉特中旗| 西盟| 祥云县| 和林格尔县| 三原县| 宜黄县| 屯留县| 密山市| 晋城| 沙田区| 突泉县| 揭东县| 将乐县| 基隆市| 合江县| 仙居县| 女性| 田东县| 万安县| 永清县| 南平市| 卢氏县| 涞水县| 甘洛县| 深州市| 桐城市| 儋州市| 洛浦县| 涡阳县| 平邑县| 仁怀市| 竹山县|