找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dependability in Sensor, Cloud, and Big Data Systems and Applications; 5th International Co Guojun Wang,Md Zakirul Alam Bhuiyan,Yizhi Ren C

[復(fù)制鏈接]
查看: 37352|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:15:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications
副標(biāo)題5th International Co
編輯Guojun Wang,Md Zakirul Alam Bhuiyan,Yizhi Ren
視頻videohttp://file.papertrans.cn/266/265695/265695.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Dependability in Sensor, Cloud, and Big Data Systems and Applications; 5th International Co Guojun Wang,Md Zakirul Alam Bhuiyan,Yizhi Ren C
描述This book constitutes the refereed proceedings of the 5th International Conference on?Dependability in Sensor, Cloud, and Big Data Systems and Applications, DependSys, held in Guangzhou, China, in November 2019..The volume presents 39 full papers, which were carefully reviewed and selected from 112 submissions. The papers are organized in topical sections on ?dependability and security fundamentals and technologies; dependable and secure systems; dependable and secure applications; dependability and security measures and assessments; explainable artificial inteligence for cyberspace..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computer network; computer security; data communication systems; data mining; da
版次1
doihttps://doi.org/10.1007/978-981-15-1304-6
isbn_softcover978-981-15-1303-9
isbn_ebook978-981-15-1304-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications影響因子(影響力)




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications影響因子(影響力)學(xué)科排名




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications網(wǎng)絡(luò)公開度




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications被引頻次




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications被引頻次學(xué)科排名




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications年度引用




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications年度引用學(xué)科排名




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications讀者反饋




書目名稱Dependability in Sensor, Cloud, and Big Data Systems and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:01:53 | 只看該作者
Magnetic Resonance Microscopy AT9.4 Tesla,pository. We use the trained models to predict whether a mail is spam or not, and find better prediction scheme by comparing quantitative results. The experimental results show that the method of decision forest regression can get better performance and is suitable for numerical prediction.
地板
發(fā)表于 2025-3-22 08:32:14 | 只看該作者
5#
發(fā)表于 2025-3-22 08:59:28 | 只看該作者
Language and the emergence of environment the surprising shapes in restorative images preparing. To improve the exhibition of our proposed procedure we utilize the artificial bee colony to optimize and classify the feature selected or extracted by the WPD. Results shows that our method perform better to segment the curvy shapes and haemorrhagic areas in MRI images.
6#
發(fā)表于 2025-3-22 14:47:45 | 只看該作者
Dwelling, Place and Environment from video sequences; (2) feature creation, where body features are constructed using body keypoints; and (3) classifier selection when such data are used to train four different classifiers in order to determine the one that best performs. The results are analyzed on the dataset Gotcha, characterized by user and camera either in motion.
7#
發(fā)表于 2025-3-22 19:10:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:47:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:17 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:01 | 只看該作者
A Comparative Study of Two Different Spam Detection Methodspository. We use the trained models to predict whether a mail is spam or not, and find better prediction scheme by comparing quantitative results. The experimental results show that the method of decision forest regression can get better performance and is suitable for numerical prediction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 忻城县| 娄底市| 姚安县| 英德市| 苏州市| 延川县| 农安县| 澎湖县| 平原县| 五华县| 固始县| 淅川县| 宁阳县| 崇礼县| 绥江县| 昌邑市| 五常市| 宝坻区| 神木县| 屏山县| 五指山市| 浮梁县| 克拉玛依市| 东安县| 南华县| 铁岭县| 福海县| 西华县| 永善县| 湾仔区| 河北区| 富阳市| 邵东县| 会宁县| 郓城县| 隆回县| 岳阳市| 鹤山市| 钟祥市| 林州市|