找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Degeneration of Abelian Varieties; Gerd Faltings,Ching-Li Chai Book 1990 Springer-Verlag Berlin Heidelberg 1990 Hecke operator.Moduli Raum

[復(fù)制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:52:32 | 只看該作者
22#
發(fā)表于 2025-3-25 07:30:11 | 只看該作者
Die Altersverteilung der Anorexia nervosa,eration of various spectral sequences. Our method, developed in [F 1], is based on the Bernstein-Gelfand-Gelfand (abbreviated as BGG) resolution (cf. [BGG]), Mumford’s extension of equivariant vector bundles to toroidal compactifications (cf. [Mum 6]) and Deligne’s Hodge theory (cf. [D 2], [D 3]). M
23#
發(fā)表于 2025-3-25 13:29:46 | 只看該作者
Die Steigerung der Regelungseffizienzave proved any serious theorem here. Difficulties arise on two sides: in geometry, with the Lefschetz trace formula for Hecke correspondences and in the harmonic analysis, with the Selberg trace formula for automorphic representations of the symplectic group. Both call for further work.
24#
發(fā)表于 2025-3-25 16:48:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:12 | 只看該作者
Ingeborg Nütten,Peter SauermannWe first outline in general terms the various steps of our construction of the toroidal compactification of .., denoted by ... Precise definitions will be given in due course. These steps are:
26#
發(fā)表于 2025-3-26 01:48:02 | 只看該作者
Preliminaries,An . is a group scheme . : . → . which is smooth, proper with (geometrically) connected fibres. A basic fact is that an abelian scheme is actually a commutative group scheme.
27#
發(fā)表于 2025-3-26 04:56:44 | 只看該作者
28#
發(fā)表于 2025-3-26 09:28:07 | 只看該作者
29#
發(fā)表于 2025-3-26 12:58:05 | 只看該作者
978-3-642-08088-3Springer-Verlag Berlin Heidelberg 1990
30#
發(fā)表于 2025-3-26 17:24:13 | 只看該作者
Degeneration of Polarized Abelian Varieties,g the following complex analogue. Let . = (.*)., . = .., where .* denotes the punctured unit disk and . the unit disk in ?. Let .. be a family of abelian varieties of dimension . over ... In general, this family may degenerate over ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸阳市| 京山县| 东莞市| 秦安县| 乐安县| 额敏县| 张家口市| 嵊州市| 牙克石市| 海淀区| 祥云县| 宁海县| 贵州省| 化德县| 佛山市| 丹巴县| 彭水| 江永县| 甘谷县| 行唐县| 炉霍县| 亳州市| 荥经县| 法库县| 中方县| 剑阁县| 论坛| 尚志市| 石棉县| 宁乡县| 阳新县| 新兴县| 兴业县| 绥宁县| 金川县| 贵州省| 余干县| 成武县| 平顶山市| 梨树县| 漯河市|