找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Degeneration of Abelian Varieties; Gerd Faltings,Ching-Li Chai Book 1990 Springer-Verlag Berlin Heidelberg 1990 Hecke operator.Moduli Raum

[復(fù)制鏈接]
樓主: Taylor
11#
發(fā)表于 2025-3-23 13:42:10 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:47:03 | 只看該作者
Eichler Integrals in Several Variables,is representations and closely related to the crystalline cohomology groups. (Since the crystalline cohomology is closely tied to the de Rham cohomology as is well-known, this analogy is a very good one.) The first section furnishes geometric information needed for studying cohomology, namely explic
14#
發(fā)表于 2025-3-24 00:17:49 | 只看該作者
15#
發(fā)表于 2025-3-24 04:37:48 | 只看該作者
16#
發(fā)表于 2025-3-24 06:33:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:18:09 | 只看該作者
Die Steigerung der Regelungseffizienzave proved any serious theorem here. Difficulties arise on two sides: in geometry, with the Lefschetz trace formula for Hecke correspondences and in the harmonic analysis, with the Selberg trace formula for automorphic representations of the symplectic group. Both call for further work.
18#
發(fā)表于 2025-3-24 17:52:04 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematihttp://image.papertrans.cn/d/image/264865.jpg
19#
發(fā)表于 2025-3-24 19:26:39 | 只看該作者
20#
發(fā)表于 2025-3-25 01:48:54 | 只看該作者
https://doi.org/10.1007/978-3-642-86204-5(.), . = generic point of .. = Spec(.), . = quotient field of .. As before we ...... This holds for example if . is regular, or if . is the .-adic completion of a normal excellent ring. In fact everything could be done over a formal scheme which is not necessarily affine whose coordinate rings satis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉善县| 广元市| 广河县| 济宁市| 阿克| 泽州县| 通海县| 蓬溪县| 石渠县| 呼图壁县| 仲巴县| 武川县| 克东县| 上高县| 岐山县| 楚雄市| 乌兰浩特市| 延长县| 华安县| 视频| 右玉县| 阿克陶县| 宁夏| 宣恩县| 汪清县| 江川县| 博乐市| 谷城县| 武强县| 福鼎市| 六枝特区| 九江市| 会泽县| 腾冲县| 甘洛县| 甘南县| 华安县| 富锦市| 松溪县| 忻州市| 醴陵市|