找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Fundamentals, Theory and Applications; Kaizhu Huang,Amir Hussain,Rui Zhang Book 2019 Springer Nature Switzerland AG 2019 Ne

[復(fù)制鏈接]
查看: 10270|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:40:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications
編輯Kaizhu Huang,Amir Hussain,Rui Zhang
視頻videohttp://file.papertrans.cn/265/264645/264645.mp4
概述Provides thorough background of deep learning.Introduces widely-used learning architectures and algorithms.Includes new theory and applications of deep learning
叢書(shū)名稱Cognitive Computation Trends
圖書(shū)封面Titlebook: Deep Learning: Fundamentals, Theory and Applications;  Kaizhu Huang,Amir Hussain,Rui Zhang Book 2019 Springer Nature Switzerland AG 2019 Ne
描述.The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. .Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field.. .This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in stud
出版日期Book 2019
關(guān)鍵詞Neural networks; Deep representation; Learning; Optimization; Artificial intelligence; Cognitively-inspir
版次1
doihttps://doi.org/10.1007/978-3-030-06073-2
isbn_ebook978-3-030-06073-2Series ISSN 2524-5341 Series E-ISSN 2524-535X
issn_series 2524-5341
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications影響因子(影響力)




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications被引頻次




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications被引頻次學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications年度引用




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications年度引用學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications讀者反饋




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:23 | 只看該作者
https://doi.org/10.1007/978-3-030-06073-2Neural networks; Deep representation; Learning; Optimization; Artificial intelligence; Cognitively-inspir
板凳
發(fā)表于 2025-3-22 01:52:01 | 只看該作者
Springer Nature Switzerland AG 2019
地板
發(fā)表于 2025-3-22 04:45:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:30 | 只看該作者
Politische Kultur und Sprache im Umbruchtraining data. The other is how to effectively encode both the current signal segment and the contextual dependency. Both needs many human efforts. Motivated to relieve such issues, this chapter presents a systematic investigation on architecture design strategies for recurrent neural networks in tw
6#
發(fā)表于 2025-3-22 14:09:46 | 只看該作者
7#
發(fā)表于 2025-3-22 17:34:05 | 只看該作者
Anpassung der ostdeutschen Wirtschaftgence and computer science. Deep learning technologies have been well developed and applied in this area. However, the literature still lacks a succinct survey, which would allow readers to get a quick understanding of (1) how the deep learning technologies apply to NLP and (2) what the promising ap
8#
發(fā)表于 2025-3-23 00:06:16 | 只看該作者
Amerikanisierung vs. Modernisierung as humans do. It becomes a necessity in the Internet age and big data era. From fundamental research to sophisticated applications, natural language processing includes many tasks, such as lexical analysis, syntactic and semantic parsing, discourse analysis, text classification, sentiment analysis,
9#
發(fā)表于 2025-3-23 01:34:06 | 只看該作者
10#
發(fā)表于 2025-3-23 06:12:33 | 只看該作者
Kaizhu Huang,Amir Hussain,Rui ZhangProvides thorough background of deep learning.Introduces widely-used learning architectures and algorithms.Includes new theory and applications of deep learning
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金平| 固安县| 平舆县| 玉山县| 平南县| 瑞丽市| 崇文区| 依安县| 郸城县| 靖安县| 浮山县| 达尔| 工布江达县| 杂多县| 阿拉尔市| 威海市| 安福县| 西乡县| 乐平市| 行唐县| 徐闻县| 柳州市| 拜泉县| 那坡县| 班玛县| 门头沟区| 金华市| 宣恩县| 西盟| 三门县| 成都市| 拉萨市| 贞丰县| 天镇县| 双城市| 长治市| 广平县| 乌海市| 新巴尔虎左旗| 绿春县| 冕宁县|