找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Fundamentals, Theory and Applications; Kaizhu Huang,Amir Hussain,Rui Zhang Book 2019 Springer Nature Switzerland AG 2019 Ne

[復(fù)制鏈接]
查看: 10272|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:40:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications
編輯Kaizhu Huang,Amir Hussain,Rui Zhang
視頻videohttp://file.papertrans.cn/265/264645/264645.mp4
概述Provides thorough background of deep learning.Introduces widely-used learning architectures and algorithms.Includes new theory and applications of deep learning
叢書(shū)名稱Cognitive Computation Trends
圖書(shū)封面Titlebook: Deep Learning: Fundamentals, Theory and Applications;  Kaizhu Huang,Amir Hussain,Rui Zhang Book 2019 Springer Nature Switzerland AG 2019 Ne
描述.The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing. .Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field.. .This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in stud
出版日期Book 2019
關(guān)鍵詞Neural networks; Deep representation; Learning; Optimization; Artificial intelligence; Cognitively-inspir
版次1
doihttps://doi.org/10.1007/978-3-030-06073-2
isbn_ebook978-3-030-06073-2Series ISSN 2524-5341 Series E-ISSN 2524-535X
issn_series 2524-5341
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications影響因子(影響力)




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications被引頻次




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications被引頻次學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications年度引用




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications年度引用學(xué)科排名




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications讀者反饋




書(shū)目名稱Deep Learning: Fundamentals, Theory and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:23 | 只看該作者
https://doi.org/10.1007/978-3-030-06073-2Neural networks; Deep representation; Learning; Optimization; Artificial intelligence; Cognitively-inspir
板凳
發(fā)表于 2025-3-22 01:52:01 | 只看該作者
Springer Nature Switzerland AG 2019
地板
發(fā)表于 2025-3-22 04:45:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:30 | 只看該作者
Politische Kultur und Sprache im Umbruchtraining data. The other is how to effectively encode both the current signal segment and the contextual dependency. Both needs many human efforts. Motivated to relieve such issues, this chapter presents a systematic investigation on architecture design strategies for recurrent neural networks in tw
6#
發(fā)表于 2025-3-22 14:09:46 | 只看該作者
7#
發(fā)表于 2025-3-22 17:34:05 | 只看該作者
Anpassung der ostdeutschen Wirtschaftgence and computer science. Deep learning technologies have been well developed and applied in this area. However, the literature still lacks a succinct survey, which would allow readers to get a quick understanding of (1) how the deep learning technologies apply to NLP and (2) what the promising ap
8#
發(fā)表于 2025-3-23 00:06:16 | 只看該作者
Amerikanisierung vs. Modernisierung as humans do. It becomes a necessity in the Internet age and big data era. From fundamental research to sophisticated applications, natural language processing includes many tasks, such as lexical analysis, syntactic and semantic parsing, discourse analysis, text classification, sentiment analysis,
9#
發(fā)表于 2025-3-23 01:34:06 | 只看該作者
10#
發(fā)表于 2025-3-23 06:12:33 | 只看該作者
Kaizhu Huang,Amir Hussain,Rui ZhangProvides thorough background of deep learning.Introduces widely-used learning architectures and algorithms.Includes new theory and applications of deep learning
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁山县| 四子王旗| 阜阳市| 拉萨市| 贡山| 融水| 信宜市| 永福县| 拜城县| 龙泉市| 贡觉县| 乐至县| 保靖县| 张北县| 社旗县| 镇安县| 肃南| 武平县| 高州市| 开封市| 漯河市| 大方县| 遵义市| 中牟县| 芦溪县| 南京市| 邯郸县| 云南省| 封丘县| 汾阳市| 合阳县| 洪江市| 洞口县| 洛宁县| 和田市| 武平县| 乌兰县| 垦利县| 恭城| 巴林左旗| 桑日县|