找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Convergence to Big Data Analytics; Murad Khan,Bilal Jan,Haleem Farman Book 2019 The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 13:44:09 | 只看該作者
Book 2019rstanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet
12#
發(fā)表于 2025-3-23 17:11:36 | 只看該作者
Das Variationsspektrum des Deutschenorough study of the big data analytics and the tools required to process the big data is also presented with reference to some existing and well-known work. Further, the chapter is concluded by connecting the deep learning with big data analytics for filling the gap of using machine learning for huge datasets.
13#
發(fā)表于 2025-3-23 18:37:52 | 只看該作者
14#
發(fā)表于 2025-3-24 02:07:53 | 只看該作者
https://doi.org/10.1007/978-3-476-04921-6 application of BD, BD analytical tools, and data types of BD are described, in order to enlighten the readers about this broad subject domain. Finally, the chapter concludes by identifying potential opportunities as well as challenges faced by BD and BDA.
15#
發(fā)表于 2025-3-24 06:04:57 | 只看該作者
Big Data Analytics, application of BD, BD analytical tools, and data types of BD are described, in order to enlighten the readers about this broad subject domain. Finally, the chapter concludes by identifying potential opportunities as well as challenges faced by BD and BDA.
16#
發(fā)表于 2025-3-24 07:47:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:42:44 | 只看該作者
2191-5768 chniques and applications based on these two types of deep learning..Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses var978-981-13-3458-0978-981-13-3459-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
18#
發(fā)表于 2025-3-24 18:36:47 | 只看該作者
Book 2019arning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning..Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses var
19#
發(fā)表于 2025-3-24 19:10:53 | 只看該作者
20#
發(fā)表于 2025-3-25 02:44:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠来县| 祥云县| 来凤县| 兰考县| 桃江县| 乌海市| 灌云县| 罗城| 湘潭县| 澳门| 石楼县| 南阳市| 永清县| 随州市| 红河县| 安康市| 鄂伦春自治旗| 泸州市| 遂溪县| 新龙县| 务川| 灌南县| 南阳市| 社旗县| 分宜县| 南岸区| 施秉县| 麻江县| 宜昌市| 湘潭县| 诸暨市| 台安县| 东明县| 吉安市| 蓝山县| 宁乡县| 淮南市| 老河口市| 民权县| 泗洪县| 彭泽县|