找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Convergence to Big Data Analytics; Murad Khan,Bilal Jan,Haleem Farman Book 2019 The Author(s), under exclusive license to S

[復(fù)制鏈接]
查看: 7603|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:26:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning: Convergence to Big Data Analytics
編輯Murad Khan,Bilal Jan,Haleem Farman
視頻videohttp://file.papertrans.cn/265/264644/264644.mp4
概述Offers an introduction to big data and deep learning.Presents a unification of big data and deep learning techniques.Provides an introductory level understanding of the new programming languages and t
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Deep Learning: Convergence to Big Data Analytics;  Murad Khan,Bilal Jan,Haleem Farman Book 2019 The Author(s), under exclusive license to S
描述.This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet of Things is progressively increasing in various fields, like smart cities, smart homes, and e-health. As the enormous number of connected devices generate huge amounts of data every day, we need sophisticated algorithms to deal, organize, and classify this data in less processing time and space. Similarly, existing techniques and algorithms for deep learning in big data field have several advantages thanks to the two main branches of the deep learning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning..Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses var
出版日期Book 2019
關(guān)鍵詞Deep Learning; Big Data analytics; Neural Networks; Artificial Intelligence; Internet of Things; data str
版次1
doihttps://doi.org/10.1007/978-981-13-3459-7
isbn_softcover978-981-13-3458-0
isbn_ebook978-981-13-3459-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Deep Learning: Convergence to Big Data Analytics影響因子(影響力)




書目名稱Deep Learning: Convergence to Big Data Analytics影響因子(影響力)學(xué)科排名




書目名稱Deep Learning: Convergence to Big Data Analytics網(wǎng)絡(luò)公開度




書目名稱Deep Learning: Convergence to Big Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning: Convergence to Big Data Analytics被引頻次




書目名稱Deep Learning: Convergence to Big Data Analytics被引頻次學(xué)科排名




書目名稱Deep Learning: Convergence to Big Data Analytics年度引用




書目名稱Deep Learning: Convergence to Big Data Analytics年度引用學(xué)科排名




書目名稱Deep Learning: Convergence to Big Data Analytics讀者反饋




書目名稱Deep Learning: Convergence to Big Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:08:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:08:30 | 只看該作者
Deep Learning Methods and Applications,n various fields. Deep learning has substantially improved the predictive capacity of computing devices, due to the availability of big data, with the help of superior learning algorithms. It has made it possible as well as practical to integrate machine learning with sophisticated applications incl
地板
發(fā)表于 2025-3-22 06:51:45 | 只看該作者
Integration of Big Data and Deep Learning,rchers introduce the concept of deep learning to address the aforementioned challenge. However, big data analytics required a process consists of various steps where in each step an algorithm or a bunch of algorithm can be used. This chapter explains the role of machine learning in processing big da
5#
發(fā)表于 2025-3-22 09:19:50 | 只看該作者
Future of Big Data and Deep Learning for Wireless Body Area Networks,data. It has the ability to find the optimum set of parameters for the network layers using a back-propagation algorithm, thereby modeling intricate structures in the data distribution. Further, deep learning architectures have resulted in tremendous performance on most recent machine learning chall
6#
發(fā)表于 2025-3-22 15:05:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:34:43 | 只看該作者
8#
發(fā)表于 2025-3-23 00:19:53 | 只看該作者
2191-5768 y level understanding of the new programming languages and t.This book presents deep learning techniques, concepts, and algorithms to classify and analyze big data. Further, it offers an introductory level understanding of the new programming languages and tools used to analyze big data in real-time
9#
發(fā)表于 2025-3-23 03:23:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
札达县| 农安县| 五家渠市| 清原| 海丰县| 泰安市| 青浦区| 南木林县| 武隆县| 英吉沙县| 林口县| 荆门市| 遂溪县| 荣昌县| 中山市| 肇州县| 忻州市| 张家港市| 巴林右旗| 琼中| 临洮县| 赫章县| 上思县| 丰台区| 大新县| 承德县| 重庆市| 同心县| 沧州市| 九台市| 内江市| 阜新市| 绵阳市| 许昌市| 营口市| 平江县| 麻栗坡县| 温宿县| 西盟| 华池县| 大方县|