找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning: Convergence to Big Data Analytics; Murad Khan,Bilal Jan,Haleem Farman Book 2019 The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 13:44:09 | 只看該作者
Book 2019rstanding of the new programming languages and tools used to analyze big data in real-time, such as Hadoop, SPARK, and GRAPHX. Big data analytics using traditional techniques face various challenges, such as fast, accurate and efficient processing of big data in real-time. In addition, the Internet
12#
發(fā)表于 2025-3-23 17:11:36 | 只看該作者
Das Variationsspektrum des Deutschenorough study of the big data analytics and the tools required to process the big data is also presented with reference to some existing and well-known work. Further, the chapter is concluded by connecting the deep learning with big data analytics for filling the gap of using machine learning for huge datasets.
13#
發(fā)表于 2025-3-23 18:37:52 | 只看該作者
14#
發(fā)表于 2025-3-24 02:07:53 | 只看該作者
https://doi.org/10.1007/978-3-476-04921-6 application of BD, BD analytical tools, and data types of BD are described, in order to enlighten the readers about this broad subject domain. Finally, the chapter concludes by identifying potential opportunities as well as challenges faced by BD and BDA.
15#
發(fā)表于 2025-3-24 06:04:57 | 只看該作者
Big Data Analytics, application of BD, BD analytical tools, and data types of BD are described, in order to enlighten the readers about this broad subject domain. Finally, the chapter concludes by identifying potential opportunities as well as challenges faced by BD and BDA.
16#
發(fā)表于 2025-3-24 07:47:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:42:44 | 只看該作者
2191-5768 chniques and applications based on these two types of deep learning..Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses var978-981-13-3458-0978-981-13-3459-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
18#
發(fā)表于 2025-3-24 18:36:47 | 只看該作者
Book 2019arning, i.e. convolution and deep belief networks. This book offers insights into these techniques and applications based on these two types of deep learning..Further, it helps students, researchers, and newcomers understand big data analytics based on deep learning approaches. It also discusses var
19#
發(fā)表于 2025-3-24 19:10:53 | 只看該作者
20#
發(fā)表于 2025-3-25 02:44:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
家居| 岳西县| 额尔古纳市| 顺义区| 神农架林区| 安平县| 宿州市| 吴旗县| 西昌市| 金华市| 乌兰察布市| 阿拉尔市| 建始县| 江永县| 凉城县| 黄山市| 隆安县| 双城市| 察隅县| 金门县| 宁化县| 文山县| 汾阳市| 昌图县| 辛集市| 清涧县| 赫章县| 芮城县| 分宜县| 来安县| 牙克石市| 垫江县| 阿合奇县| 罗山县| 武汉市| 安塞县| 岳池县| 泾川县| 冀州市| 万年县| 永胜县|