找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning on Windows; Building Deep Learni Thimira Amaratunga Book 2021 Thimira Amaratunga 2021 Deep Learning.Artificial Intelligence.A

[復(fù)制鏈接]
查看: 13792|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:43:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Deep Learning on Windows
副標(biāo)題Building Deep Learni
編輯Thimira Amaratunga
視頻videohttp://file.papertrans.cn/265/264630/264630.mp4
概述Covers deep learning web application design and development.Discusses Python, Dlib, Anaconda, and TensorFlow to implement deep learning on Windows.Contains real-time deep learning object identificatio
圖書(shū)封面Titlebook: Deep Learning on Windows; Building Deep Learni Thimira Amaratunga Book 2021 Thimira Amaratunga 2021 Deep Learning.Artificial Intelligence.A
描述.Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows.?The book starts with an introduction to tools for deep learning and computer vision tasks followed by instructions to install, configure, and troubleshoot them. Here, you will learn how Python can help you build deep learning models on Windows.?.Moving forward, you will build a deep learning model and understand the internal-workings of a convolutional neural network on Windows. Further, you will go through different ways to visualize the?internal-workings of deep learning models along with an understanding of transfer learning where you will learn how to build model architecture and use data augmentations. Next, you will manage and train deep learning models on Windows before deploying your application as a web application. You’ll also do some simple image processing and work with computer vision options that will help you build various applications with deep learning. Finally, you will use generative adversarial networks along with reinforcement learning.?.After reading?.Deep Learning on Windows., you will be able to desig
出版日期Book 2021
關(guān)鍵詞Deep Learning; Artificial Intelligence; AI; TensorFlow; Windows; Keras; OpenCV
版次1
doihttps://doi.org/10.1007/978-1-4842-6431-7
isbn_softcover978-1-4842-6430-0
isbn_ebook978-1-4842-6431-7
copyrightThimira Amaratunga 2021
The information of publication is updating

書(shū)目名稱(chēng)Deep Learning on Windows影響因子(影響力)




書(shū)目名稱(chēng)Deep Learning on Windows影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Deep Learning on Windows網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Deep Learning on Windows網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Deep Learning on Windows被引頻次




書(shū)目名稱(chēng)Deep Learning on Windows被引頻次學(xué)科排名




書(shū)目名稱(chēng)Deep Learning on Windows年度引用




書(shū)目名稱(chēng)Deep Learning on Windows年度引用學(xué)科排名




書(shū)目名稱(chēng)Deep Learning on Windows讀者反饋




書(shū)目名稱(chēng)Deep Learning on Windows讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:10 | 只看該作者
http://image.papertrans.cn/d/image/264630.jpg
板凳
發(fā)表于 2025-3-22 00:32:08 | 只看該作者
https://doi.org/10.1007/978-1-4842-6431-7Deep Learning; Artificial Intelligence; AI; TensorFlow; Windows; Keras; OpenCV
地板
發(fā)表于 2025-3-22 05:04:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:42:53 | 只看該作者
https://doi.org/10.1007/978-94-010-1831-9We live in the era of artificial intelligence (AI).
6#
發(fā)表于 2025-3-22 16:34:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:37 | 只看該作者
https://doi.org/10.1007/978-94-017-1233-0We are now ready to start building our first deep learning model.
8#
發(fā)表于 2025-3-23 01:07:21 | 只看該作者
https://doi.org/10.1007/978-94-017-1233-0Running our first deep learning model gave us a small glimpse of what deep learning can do. There are many exciting projects we can build with deep learning.
9#
發(fā)表于 2025-3-23 04:40:00 | 只看該作者
Conclusions and Practical ImplicationsAs you have probably learned by now, training deep learning models can take long times: hours and maybe days, based on how complex the model and how large your dataset.
10#
發(fā)表于 2025-3-23 08:14:59 | 只看該作者
Determinants of SME Loan ContractsOver the past several chapters, we have talked about some techniques to optimize the training of a model. We went through the steps of starting with a small dataset to get results that can be applied in practical scenarios.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漠河县| 淅川县| 九江县| 枣阳市| 横峰县| 绍兴市| 郧西县| 江津市| 黑河市| 古蔺县| 巴中市| 普格县| 曲沃县| 郸城县| 巴林左旗| 南投市| 石泉县| 阳春市| 镇江市| 当涂县| 苍溪县| 大方县| 奉新县| 永胜县| 梨树县| 黄冈市| 疏附县| 台州市| 西安市| 南康市| 芒康县| 财经| 登封市| 临泽县| 饶河县| 辉县市| 长垣县| 双鸭山市| 仪征市| 平山县| 台中市|