找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning on Windows; Building Deep Learni Thimira Amaratunga Book 2021 Thimira Amaratunga 2021 Deep Learning.Artificial Intelligence.A

[復(fù)制鏈接]
查看: 13795|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:43:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning on Windows
副標(biāo)題Building Deep Learni
編輯Thimira Amaratunga
視頻videohttp://file.papertrans.cn/265/264630/264630.mp4
概述Covers deep learning web application design and development.Discusses Python, Dlib, Anaconda, and TensorFlow to implement deep learning on Windows.Contains real-time deep learning object identificatio
圖書封面Titlebook: Deep Learning on Windows; Building Deep Learni Thimira Amaratunga Book 2021 Thimira Amaratunga 2021 Deep Learning.Artificial Intelligence.A
描述.Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows.?The book starts with an introduction to tools for deep learning and computer vision tasks followed by instructions to install, configure, and troubleshoot them. Here, you will learn how Python can help you build deep learning models on Windows.?.Moving forward, you will build a deep learning model and understand the internal-workings of a convolutional neural network on Windows. Further, you will go through different ways to visualize the?internal-workings of deep learning models along with an understanding of transfer learning where you will learn how to build model architecture and use data augmentations. Next, you will manage and train deep learning models on Windows before deploying your application as a web application. You’ll also do some simple image processing and work with computer vision options that will help you build various applications with deep learning. Finally, you will use generative adversarial networks along with reinforcement learning.?.After reading?.Deep Learning on Windows., you will be able to desig
出版日期Book 2021
關(guān)鍵詞Deep Learning; Artificial Intelligence; AI; TensorFlow; Windows; Keras; OpenCV
版次1
doihttps://doi.org/10.1007/978-1-4842-6431-7
isbn_softcover978-1-4842-6430-0
isbn_ebook978-1-4842-6431-7
copyrightThimira Amaratunga 2021
The information of publication is updating

書目名稱Deep Learning on Windows影響因子(影響力)




書目名稱Deep Learning on Windows影響因子(影響力)學(xué)科排名




書目名稱Deep Learning on Windows網(wǎng)絡(luò)公開度




書目名稱Deep Learning on Windows網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning on Windows被引頻次




書目名稱Deep Learning on Windows被引頻次學(xué)科排名




書目名稱Deep Learning on Windows年度引用




書目名稱Deep Learning on Windows年度引用學(xué)科排名




書目名稱Deep Learning on Windows讀者反饋




書目名稱Deep Learning on Windows讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:10 | 只看該作者
http://image.papertrans.cn/d/image/264630.jpg
板凳
發(fā)表于 2025-3-22 00:32:08 | 只看該作者
https://doi.org/10.1007/978-1-4842-6431-7Deep Learning; Artificial Intelligence; AI; TensorFlow; Windows; Keras; OpenCV
地板
發(fā)表于 2025-3-22 05:04:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:42:53 | 只看該作者
https://doi.org/10.1007/978-94-010-1831-9We live in the era of artificial intelligence (AI).
6#
發(fā)表于 2025-3-22 16:34:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:37 | 只看該作者
https://doi.org/10.1007/978-94-017-1233-0We are now ready to start building our first deep learning model.
8#
發(fā)表于 2025-3-23 01:07:21 | 只看該作者
https://doi.org/10.1007/978-94-017-1233-0Running our first deep learning model gave us a small glimpse of what deep learning can do. There are many exciting projects we can build with deep learning.
9#
發(fā)表于 2025-3-23 04:40:00 | 只看該作者
Conclusions and Practical ImplicationsAs you have probably learned by now, training deep learning models can take long times: hours and maybe days, based on how complex the model and how large your dataset.
10#
發(fā)表于 2025-3-23 08:14:59 | 只看該作者
Determinants of SME Loan ContractsOver the past several chapters, we have talked about some techniques to optimize the training of a model. We went through the steps of starting with a small dataset to get results that can be applied in practical scenarios.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新昌县| 新兴县| 山丹县| 朝阳县| 内黄县| 平安县| 仁怀市| 崇阳县| 噶尔县| 浠水县| 永宁县| 农安县| 阜阳市| 汝南县| 黄梅县| 鄂州市| 修武县| 百色市| 齐河县| 江西省| 梨树县| 本溪| 瓮安县| 石屏县| 香港 | 南江县| 响水县| 金华市| 宕昌县| 自治县| 泰安市| 安康市| 辉县市| 海口市| 桓仁| 安泽县| 宁远县| 芒康县| 阿拉善盟| 邹平县| 大新县|