找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Multi-step Prediction of Chaotic Dynamics; From Deterministic M Matteo Sangiorgio,Fabio Dercole,Giorgio Guariso Book 2021

[復制鏈接]
樓主: LANK
21#
發(fā)表于 2025-3-25 04:40:54 | 只看該作者
https://doi.org/10.1007/978-3-030-94482-7Chaotic attractors; Neural network training; Recurrent neural networks; Henon systems; Exposure bias; env
22#
發(fā)表于 2025-3-25 10:49:57 | 只看該作者
978-3-030-94481-0The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
23#
發(fā)表于 2025-3-25 15:28:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:44:43 | 只看該作者
Lecture Notes in Computer ScienceThe forecasting of these dynamics has attracted the attention of many scientists since the discovery of chaos by Lorenz in the 1960s. In the last decades, machine learning techniques have shown a greater predictive accuracy than traditional tools from nonlinear time-series analysis. In particular, a
25#
發(fā)表于 2025-3-25 23:26:28 | 只看該作者
Paria Shirani,Lingyu Wang,Mourad Debbabid by several kinds of deterministic nonlinear systems. We introduce the class of discrete-time autonomous systems so that an output time series can directly represent data measurements in a real system. The two basic concepts defining chaos are that of attractor—a bounded subset of the state space a
26#
發(fā)表于 2025-3-26 01:34:20 | 只看該作者
M. L. Simoons,T. Boehmer,J. Roelandt,J. Poolre the prototypes of chaos in non-reversible and reversible systems, respectively, and two generalized Hénon maps, which represent cases of low- and high-dimensional hyperchaos. We also present a modified version of the traditional logistic map, introducing a slow periodic dynamic of the growth rate
27#
發(fā)表于 2025-3-26 07:37:51 | 只看該作者
M. L. Simoons,T. Boehmer,J. Roelandt,J. Poolmore tangled in the prediction on a multiple-step horizon and consequently the task can be framed in different ways. For example, one can develop a single-step predictor to be used recursively along the forecasting horizon (recursive approach) or develop a multi-output model that directly forecasts
28#
發(fā)表于 2025-3-26 08:37:32 | 只看該作者
M. L. Simoons,T. Boehmer,J. Roelandt,J. Poolhe classical case of measurement noise by adding a random Gaussian signal of different intensity to the deterministic output of some archetypal chaotic systems. Then, we examine the critical case of structural noise, represented by the slow variation of the growth rate parameter of the logistic map.
29#
發(fā)表于 2025-3-26 13:32:41 | 只看該作者
Prognostic Value of Stress Testingpecific information to ensure the reproducibility of a wide number of numerical experiments. A sensitivity analysis on some critical aspects is provided in order to prove the robustness of our setting. Considering the long-term behavior of the predictors, those trained for the one-step forecasting a
30#
發(fā)表于 2025-3-26 20:32:02 | 只看該作者
Laurence Kay,André Rossi,Valdur Saks difficulty of their prediction. Our analysis shows that the LSTM predictor trained without teacher forcing is the most accurate approach in the forecasting of complex oscillatory time series. This predictor always provides the best accuracy in all the considered tasks, spanning a wide range of comp
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 06:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
虞城县| 襄樊市| 大庆市| 松桃| 台山市| 札达县| 靖州| 鄂州市| 特克斯县| 莎车县| 宝丰县| 满城县| 泾阳县| 寻乌县| 康定县| 瑞安市| 德昌县| 额济纳旗| 蓬莱市| 砚山县| 忻州市| 桂东县| 敖汉旗| 栾川县| 鄯善县| 闻喜县| 青海省| 霍邱县| 西峡县| 兴仁县| 乐亭县| 花莲县| 晋城| 营山县| 大姚县| 南部县| 保靖县| 会东县| 大安市| 青田县| 扬中市|