找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Multi-step Prediction of Chaotic Dynamics; From Deterministic M Matteo Sangiorgio,Fabio Dercole,Giorgio Guariso Book 2021

[復(fù)制鏈接]
查看: 46928|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:56:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics
副標(biāo)題From Deterministic M
編輯Matteo Sangiorgio,Fabio Dercole,Giorgio Guariso
視頻videohttp://file.papertrans.cn/265/264625/264625.mp4
叢書名稱SpringerBriefs in Applied Sciences and Technology
圖書封面Titlebook: Deep Learning in Multi-step Prediction of Chaotic Dynamics; From Deterministic M Matteo Sangiorgio,Fabio Dercole,Giorgio Guariso Book 2021
描述.The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from deterministic models with different degrees of complexity and chaoticity to noisy systems and then to real-world cases, the book compares the performances of various neural network architectures (feed-forward and recurrent). It also introduces an innovative and powerful approach for training recurrent structures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation..
出版日期Book 2021
關(guān)鍵詞Chaotic attractors; Neural network training; Recurrent neural networks; Henon systems; Exposure bias; env
版次1
doihttps://doi.org/10.1007/978-3-030-94482-7
isbn_softcover978-3-030-94481-0
isbn_ebook978-3-030-94482-7Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics影響因子(影響力)




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics影響因子(影響力)學(xué)科排名




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics被引頻次




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics被引頻次學(xué)科排名




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics年度引用




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics年度引用學(xué)科排名




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics讀者反饋




書目名稱Deep Learning in Multi-step Prediction of Chaotic Dynamics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:03:49 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:13 | 只看該作者
Book 2021uctures specific for sequence-to-sequence tasks. The book also presents one of the first attempts in the context of environmental time series forecasting of applying transfer-learning techniques such as domain adaptation..
5#
發(fā)表于 2025-3-22 10:03:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:44:53 | 只看該作者
Paria Shirani,Lingyu Wang,Mourad Debbabia reference trajectory along independent directions. When a model is not available, an attractor can be estimated in the space of delayed outputs, that is, using a finite moving window on the data time series as state vector along the trajectory.
7#
發(fā)表于 2025-3-22 18:22:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:30:48 | 只看該作者
Book 2021ost of the current literature, it implements a multi-step approach, i.e., the forecast of an entire interval of future values. This is relevant for many applications, such as model predictive control, that requires predicting the values for the whole receding horizon. Going progressively from determ
9#
發(fā)表于 2025-3-23 01:22:19 | 只看該作者
10#
發(fā)表于 2025-3-23 09:29:24 | 只看該作者
M. L. Simoons,T. Boehmer,J. Roelandt,J. Poolresents a challenging task. Lastly, we consider two real-world time series of solar irradiance and ozone concentration, measured at two stations in Northern Italy. These dynamics are shown to be chaotic movements by means of the tools of nonlinear time-series analysis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫云| 盘锦市| 丹江口市| 镇沅| 镇宁| 元江| 舟曲县| 元氏县| 额敏县| 普安县| 涞水县| 沁水县| 天祝| 洱源县| 崇左市| 内乡县| 京山县| 商城县| 德格县| 克山县| 阳西县| 广昌县| 建湖县| 舟曲县| 巴彦县| 仲巴县| 铜山县| 壤塘县| 贵溪市| 甘泉县| 江源县| 临高县| 永和县| 含山县| 全州县| 府谷县| 河北省| 南靖县| 合肥市| 青阳县| 凤城市|