找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Computational Mechanics; An Introductory Cour Stefan Kollmannsberger,Davide D‘Angella,Leon Herrm Textbook 2021 The Editor(

[復(fù)制鏈接]
樓主: 回憶錄
21#
發(fā)表于 2025-3-25 03:23:08 | 只看該作者
Physics-Informed Neural Networks,e evolution in a one-dimensional spatial domain is determined using the non-linear heat equation, using both a continuous and a discrete approach. Finally, the data-driven identification is illustrated with the static bar, where the cross-sectional stiffness is estimated from the displacement.
22#
發(fā)表于 2025-3-25 07:44:28 | 只看該作者
Deep Energy Method,r to handle singularities than with the PINNs. However, this approach cannot be used for the identification of differential equations. The method is illustrated with the same static bar example from Chap.?2, where the displacement is estimated.
23#
發(fā)表于 2025-3-25 13:50:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:39:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:34:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:29:07 | 只看該作者
Introduction,ter interest in areas other than computer science, such as physics and engineering. This chapter provides a brief overview of the recent developments in artificial intelligence. Furthermore, several ideas of different approaches using deep learning in computational mechanics are introduced. When tra
28#
發(fā)表于 2025-3-26 09:20:14 | 只看該作者
Fundamental Concepts of Machine Learning, this using data. This chapter gives an overview of the fundamental concepts, including the data structures, learning types, and the different machine learning tasks. Additionally, the gradient descent method is introduced to illustrate how many machine learning algorithms learn through experience.
29#
發(fā)表于 2025-3-26 15:29:38 | 只看該作者
Neural Networks,s. ANNs serve as universal function approximators, meaning that a sufficiently complex neural network can learn almost any function in any dimension. This flexibility, combined with backpropagation and a learning algorithm, enables to learn unknown functions with an astonishing accuracy. This chapte
30#
發(fā)表于 2025-3-26 20:25:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 03:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博白县| 瓦房店市| 永城市| 漳州市| 于田县| 金溪县| 肃南| 镇康县| 临汾市| 远安县| 漳州市| 星座| 淮安市| 达孜县| 临安市| 海原县| 绥棱县| 疏勒县| 扎鲁特旗| 宜州市| 喀什市| 行唐县| 浠水县| 汉阴县| 阿图什市| 镇平县| 宜宾县| 武功县| 微山县| 兴文县| 襄城县| 施甸县| 饶阳县| 赤壁市| 黄浦区| 云和县| 清流县| 讷河市| 务川| 定襄县| 额尔古纳市|