找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Computational Mechanics; An Introductory Cour Stefan Kollmannsberger,Davide D‘Angella,Leon Herrm Textbook 2021 The Editor(

[復制鏈接]
查看: 19017|回復: 39
樓主
發(fā)表于 2025-3-21 17:58:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning in Computational Mechanics
副標題An Introductory Cour
編輯Stefan Kollmannsberger,Davide D‘Angella,Leon Herrm
視頻videohttp://file.papertrans.cn/265/264618/264618.mp4
概述Introduces to the adaption of learning-based methods in the domain of computational mechanics.Presents fundamental concepts of Machine Learning, Neural Networks and their corresponding algorithms.Revi
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Deep Learning in Computational Mechanics; An Introductory Cour Stefan Kollmannsberger,Davide D‘Angella,Leon Herrm Textbook 2021 The Editor(
描述.This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method..The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar..Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.. .?.
出版日期Textbook 2021
關(guān)鍵詞Computational Intelligence; Artificial Intelligence; Computational Mechanics; Neural Networks; Machine L
版次1
doihttps://doi.org/10.1007/978-3-030-76587-3
isbn_softcover978-3-030-76589-7
isbn_ebook978-3-030-76587-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning in Computational Mechanics影響因子(影響力)




書目名稱Deep Learning in Computational Mechanics影響因子(影響力)學科排名




書目名稱Deep Learning in Computational Mechanics網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Computational Mechanics網(wǎng)絡(luò)公開度學科排名




書目名稱Deep Learning in Computational Mechanics被引頻次




書目名稱Deep Learning in Computational Mechanics被引頻次學科排名




書目名稱Deep Learning in Computational Mechanics年度引用




書目名稱Deep Learning in Computational Mechanics年度引用學科排名




書目名稱Deep Learning in Computational Mechanics讀者反饋




書目名稱Deep Learning in Computational Mechanics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:39:32 | 只看該作者
C. Z. Dong,P. Nordlander,T. E. Madeyhysics and engineering have also taken advantage of machine learning by tuning these methods for their purpose. This chapter starts with a general review and then describes combined models and surrogate models. The idea is to show how machine learning can be used in physics and engineering without diving into technical details.
板凳
發(fā)表于 2025-3-22 02:14:32 | 只看該作者
https://doi.org/10.1007/978-3-030-76587-3Computational Intelligence; Artificial Intelligence; Computational Mechanics; Neural Networks; Machine L
地板
發(fā)表于 2025-3-22 07:40:18 | 只看該作者
978-3-030-76589-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 11:15:47 | 只看該作者
https://doi.org/10.1007/978-3-642-73728-2ter interest in areas other than computer science, such as physics and engineering. This chapter provides a brief overview of the recent developments in artificial intelligence. Furthermore, several ideas of different approaches using deep learning in computational mechanics are introduced. When tra
6#
發(fā)表于 2025-3-22 15:00:40 | 只看該作者
Desorption Processes in Planetary Science this using data. This chapter gives an overview of the fundamental concepts, including the data structures, learning types, and the different machine learning tasks. Additionally, the gradient descent method is introduced to illustrate how many machine learning algorithms learn through experience.
7#
發(fā)表于 2025-3-22 20:44:24 | 只看該作者
R. L. Kurtz,R. Stockbauer,T. E. Madeys. ANNs serve as universal function approximators, meaning that a sufficiently complex neural network can learn almost any function in any dimension. This flexibility, combined with backpropagation and a learning algorithm, enables to learn unknown functions with an astonishing accuracy. This chapte
8#
發(fā)表于 2025-3-22 21:25:09 | 只看該作者
C. Z. Dong,P. Nordlander,T. E. Madeyhysics and engineering have also taken advantage of machine learning by tuning these methods for their purpose. This chapter starts with a general review and then describes combined models and surrogate models. The idea is to show how machine learning can be used in physics and engineering without d
9#
發(fā)表于 2025-3-23 01:40:19 | 只看該作者
D. Feldmann,J. Kutzner,K. H. Welgel equation, including the residual in the cost function. PINNs can be used for both solving and discovering differential equations. In this chapter, PINNs are illustrated with three one-dimensional examples. The first example shows how the displacement of a static bar can be computed. The temperatur
10#
發(fā)表于 2025-3-23 06:07:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉善左旗| 南投县| 宿州市| 调兵山市| 江安县| 叶城县| 景德镇市| 西充县| 广宁县| 勃利县| 古交市| 醴陵市| 武隆县| 民县| 乐东| 曲麻莱县| 陆河县| 临漳县| 铜鼓县| 贡山| 乐都县| 莲花县| 祁连县| 西青区| 麦盖提县| 潢川县| 平武县| 额敏县| 阜城县| 南开区| 西青区| 罗江县| 武定县| 三亚市| 平度市| 天祝| 绍兴市| 个旧市| 农安县| 青州市| 墨玉县|