找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Cancer Diagnosis; Utku Kose,Jafar Alzubi Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: 密度
21#
發(fā)表于 2025-3-25 05:21:06 | 只看該作者
1860-949X niques such as CNN, LSTM, and Autoencoder Networks.Offers a This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for count
22#
發(fā)表于 2025-3-25 11:10:30 | 只看該作者
23#
發(fā)表于 2025-3-25 11:42:30 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:21 | 只看該作者
Designing Organizational Systemsobtained using pre-trained Inception v3 model. The resulting vectors are then used as input to the linear SVM (Support Vector Machine) classification model. The SVM model provided an accuracy of 75% on the blind folded test dataset provided in the competition.
25#
發(fā)表于 2025-3-25 23:37:45 | 只看該作者
,Classification of Canine Fibroma and?Fibrosarcoma Histopathological Images Using Convolutional Neurmuch higher performance value and training time is shorter than others. Thanks to low prediction error rate achieved with FibroNET network using real data, it seems possible to develop an artificial intelligence-based reliable decision support system that will facilitate surgeons’ decision making in practice.
26#
發(fā)表于 2025-3-26 01:55:58 | 只看該作者
27#
發(fā)表于 2025-3-26 07:07:39 | 只看該作者
Designing Organizational Systemsst performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%. Analysis on skin lesion pathology type was also performed with classification accuracy for melanoma and basal cell carcinoma being equal to 79.13 and 82.88%, respectively.
28#
發(fā)表于 2025-3-26 09:41:37 | 只看該作者
29#
發(fā)表于 2025-3-26 13:23:41 | 只看該作者
Opening up the Innovation Processlearning is nowadays a very promising approach to develop effective solution for clinical diagnosis. This chapter provides at first some basic concepts and techniques behind brain tumor segmentation. Then the imaging techniques used for brain tumor visualization are described. Later on, the dataset and segmentation methods are discussed.
30#
發(fā)表于 2025-3-26 16:52:14 | 只看該作者
Evaluation of Big Data Based CNN Models in Classification of Skin Lesions with Melanoma,st performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%. Analysis on skin lesion pathology type was also performed with classification accuracy for melanoma and basal cell carcinoma being equal to 79.13 and 82.88%, respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平泉县| 闸北区| 安丘市| 金乡县| 永吉县| 重庆市| 黎城县| 英吉沙县| 老河口市| 桂阳县| 冕宁县| 湘潭县| 江西省| 彰武县| 香港 | 临桂县| 广灵县| 青龙| 宜州市| 象山县| 秦安县| 若尔盖县| 兴和县| 眉山市| 鄄城县| 和田县| 穆棱市| 南岸区| 浦北县| 西乡县| 道真| 左云县| 通州市| 乳山市| 嘉禾县| 绥江县| 皮山县| 新干县| 象州县| 宁强县| 湟中县|