找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Cancer Diagnosis; Utku Kose,Jafar Alzubi Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
查看: 37610|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:08:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning for Cancer Diagnosis
編輯Utku Kose,Jafar Alzubi
視頻videohttp://file.papertrans.cn/265/264603/264603.mp4
概述Highlights recent advanced applications of Deep Learning for diagnosing cancer.Discusses relevant solutions for medical diagnosis using techniques such as CNN, LSTM, and Autoencoder Networks.Offers a
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Deep Learning for Cancer Diagnosis;  Utku Kose,Jafar Alzubi Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive lice
描述This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed..Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation..
出版日期Book 2021
關(guān)鍵詞Artificial intelligence; Machine learning; Medical diagnosis; Autoencoder Networks; Brain tumours; Histop
版次1
doihttps://doi.org/10.1007/978-981-15-6321-8
isbn_softcover978-981-15-6323-2
isbn_ebook978-981-15-6321-8Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Deep Learning for Cancer Diagnosis影響因子(影響力)




書目名稱Deep Learning for Cancer Diagnosis影響因子(影響力)學(xué)科排名




書目名稱Deep Learning for Cancer Diagnosis網(wǎng)絡(luò)公開度




書目名稱Deep Learning for Cancer Diagnosis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning for Cancer Diagnosis被引頻次




書目名稱Deep Learning for Cancer Diagnosis被引頻次學(xué)科排名




書目名稱Deep Learning for Cancer Diagnosis年度引用




書目名稱Deep Learning for Cancer Diagnosis年度引用學(xué)科排名




書目名稱Deep Learning for Cancer Diagnosis讀者反饋




書目名稱Deep Learning for Cancer Diagnosis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:13:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:52:35 | 只看該作者
地板
發(fā)表于 2025-3-22 06:07:12 | 只看該作者
Ilia Bider,Paul Johannesson,Erik Perjonsgh resolution real histopathological microscope images has been developed. In order to determine the network performance, the well-known network models (VGG16, ResNET50, MobileNet-V2 and Inception-V3) were subjected to training and testing according to the same hardware and training criteria. While
5#
發(fā)表于 2025-3-22 11:16:19 | 只看該作者
6#
發(fā)表于 2025-3-22 14:31:28 | 只看該作者
Designing Organizational Systems the core of tumor diagnosis. Pathology images provide clinical information about the tissues whereas the radiology images can be used for locating the lesions. This work aims at proposing a classification model which categorizes the tumor as oligodendroglioma (benign tumors) (or) astrocytoma (Malig
7#
發(fā)表于 2025-3-22 20:20:52 | 只看該作者
J?rn Flohr Nielsen,Henrik Bendixen S?rensenld, advancements in software, hardware and precise and fine-tune images acquired from sensors. With the advancement in the field of medical and applications of Artificial Intelligence scaling to the height of improvement, modern state-of-the-art applications of Deep Learning for better cancer diagno
8#
發(fā)表于 2025-3-22 23:48:20 | 只看該作者
9#
發(fā)表于 2025-3-23 03:34:40 | 只看該作者
10#
發(fā)表于 2025-3-23 08:46:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 且末县| 红原县| 平塘县| 宁津县| 东阿县| 团风县| 永吉县| 东山县| 宜兰市| 张家口市| 荥阳市| 正蓝旗| 彩票| 澄城县| 普兰县| 德格县| 济源市| 张家界市| 招远市| 静安区| 长治市| 玛曲县| 施甸县| 中方县| 德化县| 建昌县| 体育| 镇康县| 怀仁县| 荣昌县| 通化市| 桃江县| 内丘县| 栾川县| 库车县| 横山县| 黎城县| 稷山县| 双辽市| 太仆寺旗|