找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz

[復(fù)制鏈接]
樓主: breath-focus
11#
發(fā)表于 2025-3-23 10:16:41 | 只看該作者
Deep Learning,ent years and has shown great promise in fields such as computer vision [24], speech recognition [25], and language processing [26]. The aim of this chapter is to provide the reader with a brief background on neural networks and deep learning methods which are discussed in the later sections.
12#
發(fā)表于 2025-3-23 14:33:55 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:33 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:15 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:11:45 | 只看該作者
Book 2019urrently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to
17#
發(fā)表于 2025-3-24 12:29:03 | 只看該作者
Introduction, vehicles on the road has led to increased pressure to solve issues such as traffic congestion, pollution, and road safety. The leading answer to resolving these issues among the research community is self-driving cars [1–3]. For instance, according to the World Health Organization, an estimated 1.3
18#
發(fā)表于 2025-3-24 15:10:06 | 只看該作者
Deep Learning,mples (i.e., training data) and the algorithm learns to solve the task on its own. Given enough training data, machine learning algorithms can optimize their solution to outperform traditional programming methods. Artificial neural networks are a promising tool for machine learning methods, and have
19#
發(fā)表于 2025-3-24 19:46:43 | 只看該作者
Deep Learning for Vehicle Control,eralization capability offered through learning from big data, and highly scalable properties to high-dimensional observationaction mappings enables deep learning to outperform hand-engineered control techniques. For these reasons, there has been several approaches to using deep learning to control
20#
發(fā)表于 2025-3-24 23:41:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁阳市| 江都市| 阿尔山市| 宿迁市| 阿巴嘎旗| 湖南省| 遂宁市| 平武县| 观塘区| 巴彦县| 航空| 渝北区| 海阳市| 友谊县| 天柱县| 阿城市| 兴文县| 迁安市| 永兴县| 南和县| 宁化县| 思南县| 乌兰浩特市| 乃东县| 昭苏县| 武城县| 冷水江市| 手游| 山阴县| 冷水江市| 教育| 仙游县| 临海市| 德州市| 定兴县| 略阳县| 田东县| 合川市| 西乌珠穆沁旗| 慈利县| 黄冈市|