找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz

[復(fù)制鏈接]
查看: 19366|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:36:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning for Autonomous Vehicle Control
副標(biāo)題Algorithms, State-of
編輯Sampo Kuutti,Saber Fallah,Richard Bowden
視頻videohttp://file.papertrans.cn/265/264600/264600.mp4
叢書名稱Synthesis Lectures on Advances in Automotive Technology
圖書封面Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz
描述.The next generation of autonomous vehicles will provide major improvements in traffic flow, fuel efficiency, and vehicle safety. Several challenges currently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to test the system in the wide variety of scenarios which it may encounter after deployment. However, deep learning methods have shown great promise in not only providing excellent performance for complex and non-linear control problems, but also in generalizing previously learned rules to new scenarios. For these reasons, the use of deep neural networks for vehicle control has gained significant interest...In this book, we introduce relevant deep learning techniques, discuss recent algorithms applied to autonomous vehicle control, identify strengths and limitations of available methods, discuss research challenges in the field, and provide insights into the future trends in this rapidly evolving field..
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01502-1
isbn_softcover978-3-031-00374-5
isbn_ebook978-3-031-01502-1Series ISSN 2576-8107 Series E-ISSN 2576-8131
issn_series 2576-8107
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Deep Learning for Autonomous Vehicle Control影響因子(影響力)




書目名稱Deep Learning for Autonomous Vehicle Control影響因子(影響力)學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control網(wǎng)絡(luò)公開度




書目名稱Deep Learning for Autonomous Vehicle Control網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control被引頻次




書目名稱Deep Learning for Autonomous Vehicle Control被引頻次學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control年度引用




書目名稱Deep Learning for Autonomous Vehicle Control年度引用學(xué)科排名




書目名稱Deep Learning for Autonomous Vehicle Control讀者反饋




書目名稱Deep Learning for Autonomous Vehicle Control讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:14 | 只看該作者
Kristina H??k,David Benyon,Alan J. Munro vehicles on the road has led to increased pressure to solve issues such as traffic congestion, pollution, and road safety. The leading answer to resolving these issues among the research community is self-driving cars [1–3]. For instance, according to the World Health Organization, an estimated 1.3
板凳
發(fā)表于 2025-3-22 01:22:57 | 只看該作者
地板
發(fā)表于 2025-3-22 05:35:11 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:13 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:48 | 只看該作者
Designing Instruction For Open Sharingts to later chapters were also presented. The review of control techniques was broken into three sections: lateral, longitudinal, and full vehicle control. The lateral control systems were shown to favor using supervised learning to predict steering angles from image inputs, while the dominant trend
7#
發(fā)表于 2025-3-22 18:16:54 | 只看該作者
Deep Learning for Autonomous Vehicle Control978-3-031-01502-1Series ISSN 2576-8107 Series E-ISSN 2576-8131
8#
發(fā)表于 2025-3-22 23:54:47 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:56 | 只看該作者
Kristina H??k,David Benyon,Alan J. Munroent years and has shown great promise in fields such as computer vision [24], speech recognition [25], and language processing [26]. The aim of this chapter is to provide the reader with a brief background on neural networks and deep learning methods which are discussed in the later sections.
10#
發(fā)表于 2025-3-23 06:23:22 | 只看該作者
Designing Instruction For Open Sharingake recommendations for the direction of future research. Since multiple research projects have focussed on learning a single driving action, the discussion on control techniques in this chapter is broken into three sections: lateral (steering), longitudinal (acceleration and braking), and full vehicle control.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 开远市| 翼城县| 洛扎县| 治县。| 新晃| 武隆县| 玉屏| 昭苏县| 邯郸县| 阜宁县| 平原县| 菏泽市| 会同县| 永修县| 旅游| 侯马市| 河北省| 石屏县| 开封县| 英吉沙县| 桐乡市| 台南市| 宜黄县| 长宁区| 洛川县| 龙门县| 城市| 德庆县| 石泉县| 怀远县| 福建省| 通山县| 凤山市| 垣曲县| 休宁县| 金湖县| 南昌市| 建平县| 无锡市| 辽阳县|