找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz

[復(fù)制鏈接]
樓主: breath-focus
11#
發(fā)表于 2025-3-23 10:16:41 | 只看該作者
Deep Learning,ent years and has shown great promise in fields such as computer vision [24], speech recognition [25], and language processing [26]. The aim of this chapter is to provide the reader with a brief background on neural networks and deep learning methods which are discussed in the later sections.
12#
發(fā)表于 2025-3-23 14:33:55 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:33 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:15 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:11:45 | 只看該作者
Book 2019urrently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to
17#
發(fā)表于 2025-3-24 12:29:03 | 只看該作者
Introduction, vehicles on the road has led to increased pressure to solve issues such as traffic congestion, pollution, and road safety. The leading answer to resolving these issues among the research community is self-driving cars [1–3]. For instance, according to the World Health Organization, an estimated 1.3
18#
發(fā)表于 2025-3-24 15:10:06 | 只看該作者
Deep Learning,mples (i.e., training data) and the algorithm learns to solve the task on its own. Given enough training data, machine learning algorithms can optimize their solution to outperform traditional programming methods. Artificial neural networks are a promising tool for machine learning methods, and have
19#
發(fā)表于 2025-3-24 19:46:43 | 只看該作者
Deep Learning for Vehicle Control,eralization capability offered through learning from big data, and highly scalable properties to high-dimensional observationaction mappings enables deep learning to outperform hand-engineered control techniques. For these reasons, there has been several approaches to using deep learning to control
20#
發(fā)表于 2025-3-24 23:41:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤岗市| 巴塘县| 六盘水市| 新民市| 多伦县| 安乡县| 玛多县| 昭觉县| 若羌县| 彰武县| 晴隆县| 宁夏| 布尔津县| 普兰店市| 宜城市| 黑水县| 万山特区| 石景山区| 广平县| 平乡县| 高州市| 长沙县| 南城县| 南涧| 弥渡县| 徐州市| 林芝县| 潮安县| 西和县| 连平县| 子洲县| 博爱县| 大田县| 砚山县| 鄄城县| 盐亭县| 改则县| 五峰| 庆安县| 南昌市| 闸北区|