找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Autonomous Vehicle Control; Algorithms, State-of Sampo Kuutti,Saber Fallah,Richard Bowden Book 2019 Springer Nature Switz

[復(fù)制鏈接]
樓主: breath-focus
11#
發(fā)表于 2025-3-23 10:16:41 | 只看該作者
Deep Learning,ent years and has shown great promise in fields such as computer vision [24], speech recognition [25], and language processing [26]. The aim of this chapter is to provide the reader with a brief background on neural networks and deep learning methods which are discussed in the later sections.
12#
發(fā)表于 2025-3-23 14:33:55 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:33 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:15 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:11:45 | 只看該作者
Book 2019urrently prevent the deployment of autonomous vehicles, one aspect of which is robust and adaptable vehicle control. Designing a controller for autonomous vehicles capable of providing adequate performance in all driving scenarios is challenging due to the highly complex environment and inability to
17#
發(fā)表于 2025-3-24 12:29:03 | 只看該作者
Introduction, vehicles on the road has led to increased pressure to solve issues such as traffic congestion, pollution, and road safety. The leading answer to resolving these issues among the research community is self-driving cars [1–3]. For instance, according to the World Health Organization, an estimated 1.3
18#
發(fā)表于 2025-3-24 15:10:06 | 只看該作者
Deep Learning,mples (i.e., training data) and the algorithm learns to solve the task on its own. Given enough training data, machine learning algorithms can optimize their solution to outperform traditional programming methods. Artificial neural networks are a promising tool for machine learning methods, and have
19#
發(fā)表于 2025-3-24 19:46:43 | 只看該作者
Deep Learning for Vehicle Control,eralization capability offered through learning from big data, and highly scalable properties to high-dimensional observationaction mappings enables deep learning to outperform hand-engineered control techniques. For these reasons, there has been several approaches to using deep learning to control
20#
發(fā)表于 2025-3-24 23:41:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
碌曲县| 翁源县| 鄂托克旗| 柯坪县| 辉南县| 腾冲县| 榕江县| 黄石市| 焉耆| 遂溪县| 恩施市| 温泉县| 雅安市| 朝阳市| 宁明县| 运城市| 新宁县| 久治县| 长乐市| 大同县| 洪江市| 吴堡县| 武穴市| 桐城市| 天门市| 荣昌县| 武强县| 开平市| 蒲江县| 南开区| 呼玛县| 新津县| 都匀市| 峨眉山市| 神池县| 喀什市| 海晏县| 昌都县| 共和县| 盐亭县| 册亨县|