找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[復制鏈接]
樓主: 生長變吼叫
51#
發(fā)表于 2025-3-30 08:43:38 | 只看該作者
52#
發(fā)表于 2025-3-30 15:07:01 | 只看該作者
Glaucoma Detection Based on Deep Learning Network in Fundus Images based on deep learning?technique. The first is the multi-label?segmentation network, named M-Net, which solves the optic disc and optic cup segmentation jointly. M-Net contains a multi-scale U-shape convolutional network with the side-output layer to learn discriminative representations and produc
53#
發(fā)表于 2025-3-30 16:48:08 | 只看該作者
Thoracic Disease Identification and Localization with Limited Supervisionilding a highly accurate prediction model for these tasks usually requires a large number of images manually annotated with labels and finding sites of abnormalities. In reality, however, such annotated data are expensive to acquire, especially the ones with location annotations. We need methods tha
54#
發(fā)表于 2025-3-30 21:13:10 | 只看該作者
Deep Reinforcement Learning for Detecting Breast Lesions from DCE-MRI resonance images (DCE-MRI) at state-of-the-art accuracy. In contrast to previous methods based on computationally expensive exhaustive search strategies, our method reduces the inference time with a search approach that gradually focuses on lesions by progressively transforming a bounding volume un
55#
發(fā)表于 2025-3-31 02:45:58 | 只看該作者
56#
發(fā)表于 2025-3-31 08:11:58 | 只看該作者
57#
發(fā)表于 2025-3-31 10:51:18 | 只看該作者
58#
發(fā)表于 2025-3-31 13:54:51 | 只看該作者
59#
發(fā)表于 2025-3-31 21:11:37 | 只看該作者
Deep Spatial-Temporal Convolutional Neural Networks for Medical Image Restorationy and blood flow in virtually live time. However, effective visualization exposes patients to radiocontrast pharmaceuticals and extended scan times. Higher radiation dosage exposes patients to potential risks including hair loss, cataract formation, and cancer. To alleviate these risks, radiation do
60#
發(fā)表于 2025-4-1 01:22:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
开封市| 潮州市| 台南市| 文安县| 墨竹工卡县| 慈利县| 当雄县| 乐昌市| 焦作市| 昌乐县| 开江县| 千阳县| 延津县| 依安县| 达日县| 烟台市| 郎溪县| 威宁| 册亨县| 浦江县| 三门县| 布尔津县| 班玛县| 金平| 绍兴县| 保山市| 吉首市| 新河县| 佛冈县| 三江| 正蓝旗| 定南县| 靖远县| 扶余县| 镇康县| 龙川县| 湟源县| 鄂尔多斯市| 浦东新区| 绿春县| 墨竹工卡县|