找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[復(fù)制鏈接]
查看: 24964|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:18:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
編輯Le Lu,Xiaosong Wang,Lin Yang
視頻videohttp://file.papertrans.cn/265/264591/264591.mp4
概述Reviews the state of the art in deep learning approaches to robust disease detection, organ segmentation in medical image computing, and the construction and mining of large-scale radiology databases.
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics;  Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin
描述This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory.?.The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to orga
出版日期Book 2019
關(guān)鍵詞Deep Learning; Convolutional Neural Networks; Medical Image Analytics; Computer-Aided Diagnosis; Hospita
版次1
doihttps://doi.org/10.1007/978-3-030-13969-8
isbn_softcover978-3-030-13971-1
isbn_ebook978-3-030-13969-8Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics影響因子(影響力)




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics影響因子(影響力)學(xué)科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics網(wǎng)絡(luò)公開度




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics被引頻次




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics被引頻次學(xué)科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics年度引用




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics年度引用學(xué)科排名




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics讀者反饋




書目名稱Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:46 | 只看該作者
978-3-030-13971-1Springer Nature Switzerland AG 2019
板凳
發(fā)表于 2025-3-22 03:58:45 | 只看該作者
地板
發(fā)表于 2025-3-22 04:34:15 | 只看該作者
Philipp Jordan,Paula Alexandra Silva critical to guide effective patient treatment since each subtype requires distinct therapy. Image analysis?of hematoxylin and eosin (H&E)-stained whole-slide specimens of muscle biopsies are considered as a gold standard for effective IM diagnosis. Accurate segmentation of perimysium plays an impor
5#
發(fā)表于 2025-3-22 09:13:38 | 只看該作者
https://doi.org/10.1007/978-3-030-78221-4gans?(e.g., .) or neoplasms (e.g., .) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupy a large fraction of the input volume. In this chapter, we propose two coarse-to-fine mechanisms which use prediction
6#
發(fā)表于 2025-3-22 13:47:05 | 只看該作者
Lecture Notes in Computer Science image segmentation, due to the limited amount of annotated 3D data and limited computational resources. In this chapter, by rethinking the strategy to apply 3D Convolutional Neural Networks?to segment medical images, we propose a novel 3D-based coarse-to-fine?framework to efficiently tackle these c
7#
發(fā)表于 2025-3-22 19:31:37 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:55 | 只看該作者
9#
發(fā)表于 2025-3-23 02:02:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金湖县| 浠水县| 中卫市| 乐山市| 双江| 平乐县| 威信县| 武乡县| 长顺县| 黎城县| 林周县| 渭南市| 蓬溪县| 乐安县| 偃师市| 铜山县| 明溪县| 凌源市| 前郭尔| 泸西县| 高密市| 乌兰察布市| 洛扎县| 连云港市| 教育| 防城港市| 抚顺市| 冕宁县| 榆树市| 安陆市| 白沙| 洞头县| 耒阳市| 秦安县| 江源县| 巨鹿县| 视频| 读书| 汉阴县| 微博| 贵州省|