找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Image Computing; Precision Medicine, Le Lu,Yefeng Zheng,Lin Yang Book 2017 Spr

[復(fù)制鏈接]
樓主: minutia
11#
發(fā)表于 2025-3-23 12:44:24 | 只看該作者
On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imagingodalities, and studied the necessity of fine-tuned CNNs under varying amounts of training data. Second, . In response, we proposed a layer-wise fine-tuning scheme to examine how the extent or depth of fine-tuning contributes to the success of knowledge transfer. Our experiments consistently showed t
12#
發(fā)表于 2025-3-23 17:23:43 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:33 | 只看該作者
Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammogramsgnal-to-noise ratio of their appearance. We address this problem with structured output prediction models that use potential functions based on deep convolution neural network (CNN) and deep belief network (DBN). The two types of structured output prediction models that we study in this work are the
14#
發(fā)表于 2025-3-24 00:41:44 | 只看該作者
Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local Versus Global Image C disease diagnosis and quantification. However, automatic pathological kidney segmentation is still a challenging task due to large variations in contrast phase, scanning range, pathology, and position in the abdomen, etc. Methods based on global image context (e.g., atlas- or regression-based appro
15#
發(fā)表于 2025-3-24 04:02:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:26:12 | 只看該作者
Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labelingdetection of pathologies, surgical assistance as well as computer-aided diagnosis (CAD). In general, the large variability of organ locations, the spatial interaction between organs that appear similar in medical scans and orientation and size variations are among the major challenges of organ segme
17#
發(fā)表于 2025-3-24 12:29:42 | 只看該作者
18#
發(fā)表于 2025-3-24 17:18:28 | 只看該作者
Yuan Feng,Yadie Rao,RongRong Fubility scores for lesions (or pathology). We found that this second stage is a highly selective classifier that is able to reject difficult false positives while retaining good sensitivity rates. The method was evaluated on three data sets (sclerotic metastases, lymph nodes, colonic polyps) with var
19#
發(fā)表于 2025-3-24 20:22:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:58 | 只看該作者
Andrea Valente,Emanuela Marchettiegies. In this chapter, we present deep learning based approaches for two challenged tasks in histological image analysis: (1) Automated nuclear atypia scoring (NAS) on breast histopathology. We present a Multi-Resolution Convolutional Network (MR-CN) with Plurality Voting (MR-CN-PV) model for autom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呈贡县| 富阳市| 健康| 布尔津县| 赤水市| 泌阳县| 墨竹工卡县| 柘城县| 闵行区| 神池县| 广东省| 丰顺县| 宜州市| 资阳市| 海口市| 呼伦贝尔市| 蓝田县| 济源市| 宁化县| 高平市| 南京市| 桃源县| 宜宾市| 崇阳县| 克东县| 石城县| 社旗县| 伊吾县| 蒙山县| 九台市| 磐安县| 白城市| 绿春县| 临桂县| 洪泽县| 莱西市| 敦煌市| 正镶白旗| 岫岩| 晋江市| 宁陵县|